✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
激光粉末床融合(LPBF)作为增材制造的关键技术,熔池状态直接影响成型件质量。本文针对 LPBF 过程中熔池的光子发射现象,开展统计估计与多模态概率分布函数(PDF)研究。通过高精度传感器感应和测量熔池光子发射信号,运用统计学方法对信号特征进行估计,并构建多模态 PDF 模型描述光子发射的概率分布规律。研究成果有助于深入理解熔池动态行为,为实时监测与优化 LPBF 工艺参数提供理论支持与数据基础,进而提升成型件的质量与性能。
关键词
激光粉末床融合;熔池;光子发射;统计估计;多模态概率分布函数;增材制造
一、引言
1.1 研究背景
激光粉末床融合技术凭借其能够制造复杂结构零件、缩短产品研发周期等优势,在航空航天、医疗、汽车等领域得到广泛应用。在 LPBF 过程中,激光束选择性地熔化粉末层,形成熔池,熔池的温度、尺寸、形状及动态变化等状态参数对成型件的致密度、力学性能等质量指标起着决定性作用 。
1.2 熔池光子发射研究现状
熔池在熔化和凝固过程中会产生光子发射,这些光子发射信号蕴含着丰富的熔池状态信息。目前,已有部分研究通过检测熔池光子发射来监测熔池状态,但多集中于单一特征分析或简单的相关性研究,缺乏对光子发射信号全面、深入的统计分析与概率建模。同时,熔池光子发射受激光功率、扫描速度、粉末材料特性等多种因素影响,呈现出复杂的非线性、多模态特征,传统方法难以准确描述其变化规律。
1.3 研究目的与意义
本研究旨在通过对 LPBF 过程中熔池光子发射信号进行统计估计和构建多模态 PDF,揭示光子发射的内在规律,量化其不确定性。研究成果能够为 LPBF 过程的实时监测提供更准确的依据,帮助优化工艺参数,减少成型缺陷,提高增材制造产品质量,推动 LPBF 技术在高端制造领域的进一步发展。
二、LPBF 过程熔池光子发射的感应与测量
2.1 测量系统搭建
构建基于高速光电探测器、光谱仪等设备的熔池光子发射测量系统。高速光电探测器用于捕捉光子发射的强度随时间的变化信号,光谱仪则可获取光子发射的光谱信息,从而全面记录熔池光子发射的时域和频域特征。测量系统需具备高灵敏度、高时间分辨率和光谱分辨率,以适应熔池快速变化的特性 。
2.2 测量参数与实验设计
确定关键测量参数,包括激光功率、扫描速度、粉末层厚度、光斑直径等 LPBF 工艺参数,以及测量位置、测量角度等测量条件。设计多组对照实验,通过改变单一变量,获取不同工况下的熔池光子发射数据,为后续的统计分析提供丰富的数据样本。
2.3 数据采集与预处理
在实验过程中,利用数据采集卡对测量系统输出的信号进行高速采集。由于实际测量数据不可避免地存在噪声干扰,需采用滤波算法(如小波滤波、中值滤波等)对原始数据进行预处理,去除噪声,提高数据质量,确保后续分析的准确性。
三、熔池光子发射信号的统计估计
3.1 特征提取
从预处理后的光子发射信号中提取关键特征,如信号幅值、频率、上升时间、下降时间、能量分布等时域和频域特征参数。这些特征能够反映熔池的温度变化、凝固速度、材料蒸发等物理过程,为统计分析提供基础数据。
3.2 统计参数计算
基于提取的特征参数,计算常见的统计量,如均值、方差、标准差、偏度、峰度等。均值可反映信号的平均水平,方差和标准差衡量信号的离散程度,偏度和峰度则用于描述信号分布的对称性和尖峰程度 。通过分析这些统计参数在不同工艺条件下的变化规律,揭示熔池光子发射与工艺参数之间的内在联系。
3.3 相关性分析
运用相关性分析方法(如皮尔逊相关系数、斯皮尔曼相关系数等),研究不同特征参数之间以及特征参数与工艺参数之间的相关性。通过相关性分析,筛选出对熔池状态敏感且相互独立的特征参数,为构建多模态 PDF 模型提供关键变量。
四、熔池光子发射的多模态概率分布函数(PDF)构建
4.1 多模态分布假设
考虑到熔池光子发射受多种物理过程共同作用,呈现出复杂的多模态特性,假设其概率分布符合混合高斯分布或其他多模态分布形式。混合高斯分布能够通过多个高斯分布的叠加,灵活地拟合具有多个峰值的复杂分布 。
4.2 参数估计方法
采用期望最大化(EM)算法、最大似然估计(MLE)等方法对多模态 PDF 模型的参数进行估计。以混合高斯分布为例,EM 算法通过交替执行期望步骤(E - step)和最大化步骤(M - step),不断更新高斯分布的均值、方差和权重参数,直至模型收敛,实现对多模态 PDF 的精确拟合。
4.3 模型验证与评估
运用交叉验证、Akaike 信息准则(AIC)、Bayesian 信息准则(BIC)等方法对构建的多模态 PDF 模型进行验证与评估。通过比较不同模型的评估指标,选择最优的模型结构和参数,确保模型能够准确描述熔池光子发射的概率分布规律。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 马浴阳,光学工程.激光光/声多模态检测技术及其在电弧增材制造构件的应用研究[D].华中科技大学[2025-05-28].
[2] 石岩,魏登松.激光粉末床熔融增材制造未熔合气孔缺陷形成机理研究[J].中国激光, 2023, 50(20):131-143.DOI:10.3788/CJL230568.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类