在图像配准时,我们希望能找到两张图像中的独一无二的特征,那当然是拐角部位的特征最独特了!
一、计算小区域的图像斜率
这个部分很简单,就是计算图像对x的梯度和对y的梯度,直接拿Sobel卷过去就行
下图可以看出,对角区域的梯度非常明显,也印证了选取角区域作为校准的特征是正确的
从分布上也可以看出这一点
二、减去梯度平均值
计算下所有梯度的平均值,然后所有梯度都减去平均值,就可以把整体的分布拉到分布的中心区域
三、计算协方差矩阵
然后计算 M 的表达式:
M = ∑ x , y W ( x , y ) [ I x 2 I x I y I x I y I y 2 ] M = \sum_{x,y} W(x, y) \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} M=x,y∑W(x,y)[Ix2IxIyIxIyIy2]
其中 W(x, y) 可以是直接乘上高斯模糊:
四、计算特征向量特征值
根据以下公式:
R = d e t ( M ) − k ( t r a c e M ) 2 R = det(M) - k(trace M)^{2} R=det(M)−k(traceM)2
五、在特征值上用阈值提取角
对R设置一个阈值,用来筛选 R
其效果如下:
- 1、两张原图
- 2、计算 R
- 3、使用阈值后
- 4、非最大抑制,即大于阈值的设为255, 小于阈值的直接归零,只取R的局部极大点
- 5、最后的特征点效果图