[VP] Harris角点检测 Harris corner detector


在图像配准时,我们希望能找到两张图像中的独一无二的特征,那当然是拐角部位的特征最独特了!

在这里插入图片描述

在这里插入图片描述

一、计算小区域的图像斜率

这个部分很简单,就是计算图像对x的梯度和对y的梯度,直接拿Sobel卷过去就行

在这里插入图片描述

下图可以看出,对角区域的梯度非常明显,也印证了选取角区域作为校准的特征是正确的

在这里插入图片描述

从分布上也可以看出这一点

在这里插入图片描述

二、减去梯度平均值

计算下所有梯度的平均值,然后所有梯度都减去平均值,就可以把整体的分布拉到分布的中心区域

在这里插入图片描述

三、计算协方差矩阵

在这里插入图片描述

然后计算 M 的表达式:

M = ∑ x , y W ( x , y ) [ I x 2 I x I y I x I y I y 2 ] M = \sum_{x,y} W(x, y) \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} M=x,yW(x,y)[Ix2IxIyIxIyIy2]

其中 W(x, y) 可以是直接乘上高斯模糊:

在这里插入图片描述

四、计算特征向量特征值

根据以下公式:

R = d e t ( M ) − k ( t r a c e M ) 2 R = det(M) - k(trace M)^{2} R=det(M)k(traceM)2

五、在特征值上用阈值提取角

对R设置一个阈值,用来筛选 R

其效果如下:

  • 1、两张原图

在这里插入图片描述

  • 2、计算 R

在这里插入图片描述

  • 3、使用阈值后

在这里插入图片描述

  • 4、非最大抑制,即大于阈值的设为255, 小于阈值的直接归零,只取R的局部极大点

在这里插入图片描述

  • 5、最后的特征点效果图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是土豆大叔啊!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值