想知道谁适合转行 AI 产品经理?一篇文章帮你彻底搞懂!

在当今数字化时代,人工智能(AI)正以前所未有的速度渗透到各个行业,改变着我们的生活和工作方式。随着 AI 技术的广泛应用,AI 产品经理这一角色变得愈发重要,他们成为连接技术与市场需求的关键桥梁。许多人看到了这一领域的巨大潜力和发展机会,纷纷考虑转行成为 AI 产品经理。那么,究竟什么是 AI 产品经理?哪些人适合转行进入这个领域?在转型之前,又需要具备哪些核心技能呢?本文将为你一一解答。

在这里插入图片描述

一、什么是 AI 产品经理?

AI 产品经理,简单来说,是负责将人工智能技术转化为实际可用产品的专业人员。他们不仅要像传统产品经理一样,深入了解用户需求,进行产品规划、设计和推广,还要对 AI 技术有深入的理解,能够与技术团队有效沟通,确保技术能够实现产品的功能和目标。

与传统互联网产品经理相比,AI 产品经理具有一些独特之处。传统产品经理更多关注产品的功能和用户体验,而 AI 产品经理需要深入理解机器学习、自然语言处理、计算机视觉等 AI 技术,能够参与到数据采集、模型训练等技术环节中。同时,AI 产品经理的服务对象也有所不同,传统产品多面向 C 端消费者,而 AI 产品目前更多服务于 B 端企业,如金融风控、医疗诊断系统等。此外,AI 产品经理还需要处理数据隐私、算法偏见等技术伦理问题,这也是传统产品经理较少涉及的领域。

二、哪些人适合转行 AI 产品经理?

(一)传统产品经理

传统产品经理具备丰富的产品管理经验,熟悉产品从需求调研到上线运营的全生命周期。他们擅长与不同团队沟通协作,对市场趋势和用户需求有敏锐的洞察力。这些能力在转行做 AI 产品经理时都能发挥重要作用。例如,在将 AI 技术应用于现有产品或开发新的 AI 产品时,传统产品经理能够凭借其对市场和用户的理解,准确把握产品的定位和需求,确保产品具有市场竞争力。

(二)技术背景人员

拥有计算机科学、软件工程、数据分析等技术背景的人员,转行做 AI 产品经理也具有很大优势。他们对技术原理有深入理解,能够更好地与算法工程师、数据科学家等技术团队成员沟通,在技术选型、模型优化等方面做出更合理的决策。比如,在设计一个图像识别的 AI 产品时,有技术背景的产品经理能够清楚不同算法的优缺点,从而选择最适合的技术方案。

(三)行业资深人士

在特定行业,如医疗、金融、教育等领域工作多年的资深人士,也适合转行成为 AI 产品经理。他们对所在行业的业务流程、痛点和需求了如指掌,能够将 AI 技术与行业实际需求紧密结合,开发出真正解决行业问题的 AI 产品。以医疗行业为例,熟悉医疗流程和临床需求的专业人士,可以推动 AI 在疾病诊断、医疗影像分析等方面的应用,提升医疗效率和质量。

三、转型前,你需要具备哪些核心技能?

(一)技术理解能力

  1. 基础技术知识:掌握机器学习算法(如决策树、神经网络、聚类算法等)、数据特征工程、模型评估指标(如准确率、召回率、F1 值等)等基础知识。例如,了解不同机器学习算法的适用场景,能够根据具体问题选择合适的算法。

  2. 场景化技术应用:能够将技术能力与业务需求匹配,将抽象的技术转化为实际的产品功能。比如,在电商推荐系统中,通过理解协同过滤算法,设计出更精准的商品推荐功能。

  3. 技术边界认知:清楚 AI 技术的能力上限和局限性,避免在产品设计中提出不切实际的需求。例如,知道当前自然语言处理技术在语义理解方面的不足,从而合理规划智能客服的功能。

(二)产品设计与商业化能力

  1. 需求洞察:通过用户访谈、数据分析等方法,深入挖掘用户的真实需求,并将其转化为产品功能。例如,在教育行业,通过分析学生的学习数据和用户反馈,发现学生对个性化学习路径规划的需求,从而设计出相应的 AI 教育产品功能。

  2. 商业模式设计:针对不同的 AI 产业类型,制定合理的商业模式。对于行业 + AI 类型(如智能家居),需要深入了解行业特点和用户需求,制定适合该行业的商业模式;对于 AI + 行业类型(如智能客服),则要侧重技术解决方案的输出和商业模式的创新;对于基础平台(如 AI 开发平台),要关注开发者生态建设,通过提供优质的开发工具和服务,吸引开发者使用平台,实现商业价值。

  3. 产品运营能力:负责产品上线后的运营工作,通过数据分析和用户反馈,不断优化产品,提升用户体验和产品性能。例如,通过分析智能硬件产品的用户使用数据,发现用户在某个功能上的操作频率较低,进而优化该功能的设计,提高用户参与度。

(三)跨学科协作能力

  1. 技术团队协作:能够用技术语言与数据科学家、算法工程师等技术团队成员进行有效沟通,理解他们的技术方案和面临的挑战,共同推动产品的技术实现。例如,能够与算法工程师讨论模型训练过程中的数据质量问题,并提出合理的解决方案。

  2. 资源协调能力:整合算法、算力、数据等三方资源,确保产品开发过程中的资源合理分配和有效利用。在资源有限的情况下,能够根据产品的优先级和关键路径,合理安排资源,保障核心功能的开发和实现。

四、为什么 AI 产品经理值得你考虑?

(一)市场需求旺盛

随着 AI 技术在各行各业的广泛应用,企业对 AI 产品经理的需求持续增长。据相关数据显示,AI 相关的人才缺口已达数百万,其中 AI 产品经理的需求尤为突出。这意味着,选择成为 AI 产品经理,将拥有更多的就业机会和广阔的职业发展空间。

(二)薪资待遇优厚

由于市场需求大而人才短缺,AI 产品经理的薪资水平普遍较高。以国内市场为例,AI 产品经理的薪资中位数可达 36k / 月,远高于其他行业的平均薪资水平。而且,随着经验的积累和能力的提升,薪资涨幅空间巨大。

(三)推动行业创新

AI 产品经理处于技术与业务的交汇点,能够将前沿的 AI 技术应用于实际业务中,推动行业的创新和变革。通过开发出具有创新性的 AI 产品,可以为企业带来新的竞争优势,同时也为社会创造更大的价值。例如,医疗 AI 产品的出现,可以帮助医生更准确地诊断疾病,提高医疗效率,改善患者的就医体验。

五、如何快速入门?

(一)学习 AI 基础知识

通过在线课程、书籍、技术论坛等渠道,系统学习 AI 的基础知识,包括机器学习、深度学习、自然语言处理、计算机视觉等。推荐一些在线学习平台,如 Coursera、Udemy、网易云课堂等,上面有许多优质的 AI 课程。同时,可以阅读一些经典的 AI 书籍,如《人工智能:一种现代方法》《深度学习》等。

(二)积累产品实践经验

可以参与一些开源的 AI 项目,或者自己尝试设计一些简单的 AI 产品,积累产品实践经验。在实践过程中,深入理解产品从需求分析到设计、开发、测试、上线运营的全生命周期,掌握产品管理的方法和技巧。

(三)参加行业交流活动

积极参加 AI 行业的研讨会、讲座、沙龙等交流活动,与行业内的专家、从业者进行交流,了解行业的最新动态和发展趋势,拓宽人脉资源。通过与他人的交流和学习,可以快速提升自己对 AI 产品经理这一职业的认识和理解。

(四)获取相关认证

考取一些与 AI 产品经理相关的认证,如 AI 产品经理认证(AIPM)等,这些认证可以证明自己具备相关的知识和技能,提升在求职市场上的竞争力。

总之,转行成为 AI 产品经理是一个具有挑战性但充满机遇的选择。通过了解 AI 产品经理的职责和要求,判断自己是否适合这一职业,并针对性地学习和提升相关技能,相信你能够在 AI 产品经理这一领域开启新的职业篇章。

六、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值