在 AI 技术爆发的2025年,如何快速构建智能应用成为开发者关注的焦点。Dify 和 FastGPT 作为两大热门工具,凭借各自的优势吸引了大量用户。但两者究竟有何区别?开发者又该如何选择?本文从功能、定位、成本等多个维度深度解析,帮你找到答案!
01.核心功能对比
👉 Dify 更像“瑞士军刀”,覆盖从开发到部署的全流程,适合多样化需求;
👉 FastGPT 则是“专业工具”,深耕知识库问答,适合精准检索场景。
02.功能对比:Dify的五大核心优势
模型支持:灵活性与多样性
Dify 优势:
👉 支持开源与专有模型,避免厂商锁定;
👉 开发者可自由选择性价比最高的模型组合。
知识库管理:平衡效率与成本
Dify 优势:
👉 免费功能更多:Web 同步、Notion 集成无需额外付费;
👉 QA分段效果更好:问答对生成更精准,提升检索效率。
工作流编排:易用性与扩展性
Dify 优势:
👉 内置50+工具:集成 Google 搜索、DALL·E 等,扩展性强;
👉 企业级功能:支持 SSO 、权限管理,适合团队协作。
部署与成本:开源 vs 付费
Dify 优势:
👉 零成本起步:无应用数量限制,适合中小团队;
👉 灵活计费:按需调用模型,避免资源浪费。
用户体验与生态
Dify 优势:
👉 开箱即用:新用户赠送200次GPT-4调用,快速验证想法;
👉 全球化布局:已覆盖20+国家和地区,企业案例丰富。
03.选择建议:什么场景选谁?
💡 选 Dify :
-
需要多模型支持、复杂工作流或企业级功能;
-
追求高性价比和长期可扩展性;
-
非技术团队希望低代码开发
💡选 FastGPT :
-
专注知识库问答,需快速搭建智能客服;
-
接受付费功能换取更高检索效率
Dify 以“全能开发平台”的定位,在模型多样性、工作流灵活性和企业级功能上碾压对手,尤其适合需要长期迭代的复杂项目;而 FastGPT 凭借垂直领域的深耕,仍是问答场景的优选。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓