线性高斯系统

原创 2018年04月16日 10:11:24

我们平时熟知的卡尔曼滤波就是高斯滤波的一种,因为它是基于高斯分布的。用高斯函数来表示后验具有很好的影响,因为它的是单峰,有单一的极大值。高斯滤波中的参数的均值和方差称为矩参数,分别为一阶矩和二阶矩(PS:这一点的理解上非常重要)。

卡尔曼滤波就是在线性高斯假设的基础上建立起来的
1。状态转移概率p(x_t | u_t,x_t-1) 是带有随机高斯噪声的参数的线性函数
这里写图片描述
xt 为状态向量,ut为t时刻的控制向量。
At为n * n 的方阵,n为状态向量x的维数。
Bt为n * m的矩阵,m为控制向量u的维数
ε 为高斯随机向量,由状态转移的不确定性引入,其维数与状态向量维数相同,均值为0,方差用Rt表示(这里的这个R就是我们平常说的卡尔曼滤波中QR矩阵中的R矩阵)

2。测量概率p(z_t | x_t) 也是与带有高斯噪声的自变量呈线性关系

这里写图片描述

C_t为k * n的矩阵,k为测量向量Z的维数,向量δ 为测量噪声,分布为均值是0,方差为Q的多变量高斯分布

3。初始置信度必须是正态分布,用μ_0表示置信度的均值,Σ_0表示方差

历尽英雄劫 赢得美人归

历尽英雄劫 赢得美人归 ——项目管理小说《最后期限》读后批评 “当心!千万别喝陌生人递给你的饮料。”——坐长途客车时在车厢内曾看到过这样的警示标语。常外出的人都知道要提防这样的事——有人诱你喝下下了药...
  • trybird
  • trybird
  • 2003-04-07 10:35:00
  • 1888

【机器学习】机器学习(四、五、六):线性分类、高斯判别分析(GDA)、朴素贝叶斯(NB)

STANFORD机器学习公开课第4-5讲算法,文章主要介绍简单的二分类算法:线性分类器、高斯判别分析、朴素贝叶斯。...
  • hujingshuang
  • hujingshuang
  • 2015-06-04 10:53:38
  • 3514

高斯分布

数据挖掘中的高斯分布高斯分布,无论是单变量还是多元变量,在统计数据挖掘中是非常有用的,包括一些底层数据假设是高度非高斯的数据挖掘模型。我们需要好好了解多元高斯。为什么我们应该关注它 高斯像橘子汁和阳光...
  • u010182633
  • u010182633
  • 2015-05-13 16:06:18
  • 4467

线性高斯系统

我们平时熟知的卡尔曼滤波就是高斯滤波的一种,因为它是基于高斯分布的。用高斯函数来表示后验具有很好的影响,因为它的是单峰,有单一的极大值。高斯滤波中的参数的均值和方差称为矩参数,分别为一阶矩和二阶矩(P...
  • qq91752728
  • qq91752728
  • 2018-04-16 10:11:24
  • 32

Gauss-Newton算法学习

Gauss-Newton算法是解决非线性最优问题的常见算法之一,最近研读DPPTAM开源项目代码,又碰到了,索性深入看下。本次讲解内容如下:基本数学名词识记牛顿法推导、算法步骤、计算实例高斯牛顿法推导...
  • jinshengtao
  • jinshengtao
  • 2016-06-08 20:11:08
  • 18083

基于PCA-HOG的人体检测代码-包括训练,PCA降维,<em>线性</em>、<em>高斯</em>检测

(opencv里面是没有任何注释的),并且增加了样本的训练(代码中只提供了PCA50-HOG的检测算子,如有其它需要可以自行训练),<em>线性</em>检测时使用<em>线性</em>SVM优化,<em>高斯</em>检测时使用...
  • 2018年04月16日 00:00

【机器学习】高斯分布为什么普遍和常用?

似然函数到高斯分布为了得到精确值,我们需要进行多次测量,测量值大部分对称分布在真实值两侧附近。设测量期望为θ\theta,误差为ei=xi−θe_i=x_i-\theta,期望为0,误差分布满足什么规...
  • lpsl1882
  • lpsl1882
  • 2017-12-26 20:41:29
  • 792

【OpenCV3图像处理】线性滤波:均值滤波,高斯滤波

边缘检测
  • u011574296
  • u011574296
  • 2017-06-17 16:39:44
  • 502

机器学习中的高斯过程

转自:http://www.datalearner.com/blog/1051459170229238   关于高斯过程,其实网上已经有很多中文博客的介绍了。但是很多中文博客排版实在是太难看...
  • lj6052317
  • lj6052317
  • 2017-12-11 14:41:16
  • 1007

概率机器人 第三章高斯滤波(正态分布)

高斯滤波也就是在将贝叶斯滤波里面的所有置信度都用正态分布来表示。高斯分布具有单峰,这是符合机器人学中很多的追踪问题都是单峰的,并且后验都是以小的不确定性聚集在真实状态的周围。本章讨论了两种参数的绿滤波...
  • hitfangyu
  • hitfangyu
  • 2017-08-28 13:44:34
  • 776
收藏助手
不良信息举报
您举报文章:线性高斯系统
举报原因:
原因补充:

(最多只允许输入30个字)