感兴趣区域-ROI

ROI(region of interest),感兴趣区域。机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。在Halcon、OpenCV、Matlab等机器视觉软件上常用到各种算子(Operator)和函数来求得感兴趣区域ROI,并进行图像的下一步处理。
`



在图像处理领域,感兴趣区域(ROI) 是从图像中选择的一个图像区域,这个区域是你的图像分析所关注的重点。圈定该区域以便进行进一步处理。使用ROI圈定你想读的目标,可以减少处理时间,增加精度。



这里写图片描述




FR:海涛高软(hunk Xu) QQ技术交流群:386476712

你可以使用 OpenCV 库来提取感兴趣区域ROI)。 首先,你需要检测多边形的轮廓。可以使用 OpenCV 的 findContours 函数来实现这一点。这个函数会返回图像中所有轮廓的列表。 然后,你可以使用 drawContours 函数将轮廓绘制在一个空白图像上。这个图像将作为掩膜,在后续的步骤中将被用来提取感兴趣区域。 接下来,你可以使用 bitwise_and 函数将原始图像与掩膜相与,从而提取出感兴趣区域。 以下是一个简单的示例代码: ```python import cv2 import numpy as np # 读取图像 img = cv2.imread('image.png') # 将图像转为灰度 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化图像 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 寻找轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 创建空白图像作为掩膜 mask = np.zeros_like(gray) # 绘制轮廓到掩膜上 cv2.drawContours(mask, contours, -1, (255), thickness=cv2.FILLED) # 提取感兴趣区域 roi = cv2.bitwise_and(img, img, mask=mask) # 显示结果 cv2.imshow('ROI', roi) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在这个示例中,我们读取了一张图像,将其转为灰度图像,然后进行二值化处理。接着,找到图像中的轮廓,并将轮廓绘制到掩膜上。最后,我们使用掩膜提取出感兴趣区域,并显示结果。 你可以根据你的具体需求调整代码中的参数,如阈值、轮廓检测方法等。希望对你有帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值