移动机器人速度空间对比分析

本文对比分析了差速驱动和全向移动两类机器人的运动性能。差速驱动机器人,如两轮差速、履带式和四轮驱动,速度空间为矩形,而Car-like Robot速度空间呈沙漏型,受限于前轮转向机构。全向移动机器人,如麦轮平台,具有更高的运动灵活性,其速度空间为三维长方体,可在任意方向移动并自转。速度空间的范围和维度直接影响机器人的运动灵活性和适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   关注同名微信公众号“混沌无形”,阅读更多有趣好文!

原文链接: 常见移动机器人多角度对比分析(包含原文PDF百度云下载链接)

在《Car-like Robot运动模型及应用分析》等之前的文章中有分析过不同类型机器人的速度空间(相关定义介绍请参考之前的文章),可参考图 3.1,在之前的移动机器人运动学分析系列文章中谈到,本文将移动机器人按照运动约束分为两类:非全向(差速驱动)移动机器人和全向移动机器人。

其中一类移动机器人,如两轮差速驱动机器人、履带式机器人、四轮驱动机器人等,均属于差速驱动机器人的范畴,差速驱动机器人的速度空间是一个矩形,如图 3.1(a)所示,仅有直行的线速度和角速度,属于非全向移动机器人的大范畴,而car-like robot也属于非全向移动机器人的大范畴,但是其速度空间呈沙漏型,如图 3.1(b)所示,这是因为car-like robot的前轮转向角存在机构限位,使得car-like robot有最小转弯半径(无法零半径转弯——自旋转),因此car-like robot的速度空间是差速驱动机器人的速度空间的子集。

而另外一大类是全向移动机器人,包括麦轮全向移动平台、全向轮平台、四驱四转机器人等,可以沿着任意方向移动,且可自转,因此对应的速度空间是一个(实心)长方体,而非全向移动机器人的速度空间在二维平面上,比起全向移动机器人少了横向移动速度这一维度。

 

 

图 3.1 速度空间.(a)差速驱动机器人速度空间(2D),(b)car-like robot速度空间,(c)差速驱动机器人速度空间(3D),(d)全向平台速度空间.

速度空间范围可用于分析机器人运动性能,速度空间维度越高,则机器人运动灵活性越强,在狭窄空间中的适应能力越强,速度空间范围越大,机器人运动速度可调节范围越大,机动性越好。

 精彩的理论论证过程见原文链接(含全文下载链接)

由于网页排版效果一般,所以笔者按照期刊论文版式为小伙伴们整理了原文PDF,方便收藏和回味。

原文链接常见移动机器人多角度对比分析(包含原文PDF百度云下载链接)
CSDN下载链接:

38-常见移动机器人多角度对比分析.pdf

如果喜欢的话,可以关注同名微信公众号“混沌无形”,阅读更多有趣好文!

### 移动机器人速度PID控制实现与调优 #### 速度PID控制器的工作原理 在移动机器人中,速度PID控制器用于精确地跟踪预设的速度目标。该控制器接收来自速度传感器的实际速度数据,并将其与期望的目标速度进行比较。基于两者之间的差异(即误差),PID控制器计算出必要的校正动作来调整电机的输出功率,从而减小这种差距并最终使实际速度接近于设定值。 对于一个典型的PID控制系统而言,其核心在于三个增益系数——比例(P)、积分(I)以及微分(D),它们共同决定了系统的响应特性: - **P (Proportional)**: 比例项直接作用于当前时刻测量到的速度误差上; - **I (Integral)**: 积分项累积过去一段时间内的所有误差值,有助于消除静态偏差; - **D (Derivative)**: 微分项预测未来的趋势变化率,提前做出反应以抑制超调现象的发生; 这些参数的选择至关重要,因为不同的应用场景可能需要不同类型的动态性能表现。例如,在某些情况下,快速响应可能是优先考虑的因素之一;而在其他时候,则更看重稳定性和平滑度[^1]。 #### Arduino平台上的FOC算法实践案例 当涉及到四轮独立驱动的小型地面车辆时,除了基本的速度闭环外,还需要额外关注整体的姿态平衡问题。为此,《花雕学编程》一文中提到的方法采用了四个单独配置有各自PID回路的直流无刷马达(BLDC Motor),并通过平均化各轴倾角的方式获取全局倾斜状态作为反馈信号送入主控单元处理。这样做的好处是可以让每一对相对布置的车轮之间保持同步转动的同时也维持住了车身水平面内姿态的一致性。此外,通过对KP,Ki,kd这三个关键因子反复试验寻找最优组合点可有效提升整车行驶品质和操控手感[^2]. #### Simulink中的建模仿真流程概述 为了便于理解整个设计思路及其工作机理,《手把手教你学Simulink》系列教程给出了详细的指导说明。具体来说就是利用MATLAB/Simulink软件包构建虚拟原型来进行前期验证测试。在这个过程中不仅限定了各个功能区块间的接口定义还提供了图形化的界面让用户更加直观便捷的操作各项设置选项。更重要的是借助内置丰富的工具箱资源库能轻松完成复杂运算逻辑编写任务比如离散时间域下的差分方程求解器或是连续空间里的传递函数转换等等[^4]. ```matlab % 定义PID控制器参数 kp = 0.8; % 比例增益 ki = 0.5; % 积分增益 kd = 0.1; % 微分增益 % 创建SISO PID对象 pidController = pid(kp, ki, kd); % 设定初始条件和其他必要参数... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

混沌无形

谢谢老板

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值