【HDLBits刷题】Truthtable1.

In the previous exercises, we used simple logic gates and combinations of several logic gates. These circuits are examples of combinational circuits. Combinational means the outputs of the circuit is a function (in the mathematics sense) of only its inputs. This means that for any given input value, there is only one possible output value. Thus, one way to describe the behaviour of a combinational function is to explicitly list what the output should be for every possible value of the inputs. This is a truth table.

For a boolean function of N inputs, there are 2N possible input combinations. Each row of the truth table lists one input combination, so there are always 2N rows. The output column shows what the output should be for each input value.

RowInputsOutputs
numberx3x2x1f
00000
10010
20101
30111
41000
51011
61100
71111

The above truth table is for a three-input, one-output function. It has 8 rows for each of the 8 possible input combinations, and one output column. There are four inputs combinations where the output is 1, and four where the output is 0.

Synthesizing a circuit from a truth table

Suppose we want to build the above circuit, but we're limited to using only the set of standard logic gates. How would you build arbitrary logic functions (expressed as a truth table)?

One simple method to create a circuit that implements the truth table's function is to express the function in sum-of-products form. Sum (meaning OR) of products (meaning AND) means using one N-input AND gate per row of the truth table (to detect when the input matches each row), followed by an OR gate that chooses only those rows that result in a '1' output.

For the above example, the output is '1' if the input matches row 2 or row 3 or row 5 or row 7 (This is a 4-input OR gate). The input matches row 2 if x3=0 and x2=1 and x1=0 (This is a 3-input AND gate). Thus, this truth table can be implemented in canonical form by using 4 AND gates that are ORed together.

A Bit of Practice

Create a combinational circuit that implements the above truth table.

Expected solution length: Around 1 line.

 第一种就是直接把真值表描述出来,不化简:

module top_module( 
    input x3,
    input x2,
    input x1,  // three inputs
    output f   // one output
);
    assign f = ~x1&x2&~x3 | x1&x2&~x3 | x1&~x2&x3 |x1&x2&x3;

endmodule

第二种需要化简之后再用代码写出来,这种就要熟悉基本的公式化简:

module top_module( 
    input x3,
    input x2,
    input x1,  // three inputs
    output f   // one output
);
    assign f = x2&~x3 | x1&x3;

endmodule

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值