【数电】【verilog】加法器

1.2输入1bit半加器

半加器的电路如下图所示:

 

module half adder(
	input wire A,
	input wire B,
	output wire C,
	output wire sum
);

//assign sum = (A == B) ? 0 : 1;  //这两种方式都可以实现
assign sum = A^B;
assign C= A&B;

endmodule 

2.2输入1bit全加器

 真值表:

 电路图(有很多不同的电路形式):

第一种,利用连续赋值语句实现: 

module full_add2
(
	input a,     	//加数
	input b,		//被加数
	input cin,		//进位输入
	output sum,		//结果输出
	output cout		//进位输出
);
	assign sum = a^b^cin;
	assign cout = (a&b)|((a^b)&cin);
endmodule

第二种,利用行为描述方式实现:

module full_add2
(
	input a,     	//加数
	input b,		//被加数
	input cin,		//进位输入
	output sum,		//结果输出
	output cout		//进位输出
);
	assign {cout,sum} = a+b+cin; //利用拼接的方式实现全加器
endmodule

第三种,利用两个一位半加器并联实现一个一位全加器,sum = a^b^cin,cout = (a&b)|((a^b)&cin):

module add_half(
   input                A   ,
   input                B   ,
   output	wire        S   ,
   output   wire        C   
);

assign S = A ^ B;
assign C = A & B;
endmodule

/***************************************************************/
module add_full(
   input                A   ,
   input                B   ,
   input                Ci  , 

   output	wire        S   ,
   output   wire        Co   
);
    wire [1:0] s, c;
    
    add_half m1 (
        .A(A),
        .B(B),
        .S(s[0]),
        .C(c[0]));
    
    add_half m2 (
        .A(s[0]),
        .B(Ci),
        .S(s[1]),
        .C(c[1]));
    
    assign S = s[1];
    assign Co = c[0] | c[1];
endmodule

3.4位串行加法器(全加器)

在这里插入图片描述

第一种,利用半加器生成全加器,再用全加器生成串行全加器:

`timescale 1ns/1ns

module add_half(
   input                A   ,
   input                B   ,
 
   output	wire        S   ,
   output   wire        C   
);

assign S = A ^ B;
assign C = A & B;
endmodule

/***************************************************************/
module add_full(
   input                A   ,
   input                B   ,
   input                Ci  , 

   output	wire        S   ,
   output   wire        Co   
);

wire c_1;
wire c_2;
wire sum_1;

add_half add_half_1(
   .A   (A),
   .B   (B),
         
   .S   (sum_1),
   .C   (c_1)  
);
add_half add_half_2(
   .A   (sum_1),
   .B   (Ci),
         
   .S   (S),
   .C   (c_2)  
);

assign Co = c_1 | c_2;
endmodule
/******************************************************************/
module add_4(
   input         [3:0]  A   ,
   input         [3:0]  B   ,
   input                Ci  , 

   output	wire [3:0]  S   ,
   output   wire        Co   
);

wire [3:0] C;

add_full u1(
   .A   (A[0]),
   .B   (B[0]),
   .Ci  (Ci), 
          
   .S   (S[0]),
   .Co  (C[0])   
);
add_full u2(
   .A   (A[1]),
   .B   (B[1]),
   .Ci  (C[0]), 
          
   .S   (S[1]),
   .Co  (C[1])   
);
add_full u3(
   .A   (A[2]),
   .B   (B[2]),
   .Ci  (C[1]), 
          
   .S   (S[2]),
   .Co  (C[2])   
);
add_full u4(
   .A   (A[3]),
   .B   (B[3]),
   .Ci  (C[2]), 
          
   .S   (S[3]),
   .Co  (C[3])   
);
assign Co = C[3];

endmodule

第二种,利用拼接的方式来搭建电路:

//4位全加器,有低位向本位进位(即有输入进位)
module  four_bits_full_add(
  input  [3:0]a,b,
  input  cin,
  output cout,
  output [3:0]sum
);
  assign {cout,sum} = a + b + cin; 
endmodule

串行全加器是上面这样,但是这种结构的缺点是,必须要等到上一片的结果算出来之后下一片才能进行工作,当级数很高的时候计算的时间将是每一片时间的n倍,会出现组合逻辑延时过长的问题。此时另一种进位方法——超前进位加法器就可以解决这一延时过高的问题。

4.4位超前进位加法器

根据上面的讲解,我们可以得到:

 然后根据下面公式:

 带入到上面,得到:

 我们定义下面两个式子分别为进位传输函数和进位产生函数:

代入可以得到:

 最后,4位的超前进位加法器可以得到下面这些式子:

这里实在看不懂可以翻一番数电的超前进位加法器的内容。

 verilog代码如下:0

module four_bits_fast_adder(cout,sum,a,b,cin);
  output [3:0]sum;  //数据累加和本位
  output		  cout;  //输出进位
  input  [3:0]a,b;  //需要相加的数
  input       cin;  //输入进位
  wire	 [4:0]g,p,c;  //分别对应Gi、Pi和Ci
  
  assign  c[0] = cin;  //最低进位为输入进位
  assign  P = a | b;  // Pi = Ai·Bi
  assign  g = a & b;  // Gi = Ai+Bi
  assign  c[1] = g[0] | (p[0]&c[0]);  
  assign  c[2] = g[1] | ( p[1]&(g[0] | (p[0]&c[0]) );
  assign  c[3] = g[2] | (p[2]&(g[1]|(p[1]&(g[0]|(p[0]&c[0])))));
  assign  c[4] = g[3] | (p[3]&(g[2]|(p[2]&(g[1]|(p[1]&(g[0]|(p[0]&c[0])))))));
  assign  sum = p ^ c[3:0];  
  assign  cout = c[4];
endmodule

 超前进位加法器就是用电路的复杂度来换时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值