第二十二讲 延迟定理(补充)

八,计算\mathcal {L}[u_{ab}(t)]

  • 已知u_{ab}(t)=u_{a}(t)-u_{b}(t)=u(t-a)-u(t-b)
  • \mathcal {L}[u_{ab}(t)]=\mathcal {L}[u(t-a)-u(t-b)]=\mathcal {L}[u(t-a)]-\mathcal {L}[u(t-b)]
  • 因为当t< 0时,u_{ab}(t)=0,因此可以用延迟定理
  • 根据延迟定理1:\mathcal {L}[u(t-a)]=e^{-as}\mathcal {L}[u(t)]=\frac{e^{-as}}{s}
  • 同理:\mathcal {L}[u(t-b)]=e^{-bs}\mathcal {L}[u(t)]=\frac{e^{-bs}}{s}
  • 因此\mathcal {L}[u_{ab}(t)]=\frac{e^{-as}}{s}-\frac{e^{-bs}}{s}

九,计算\mathcal {L}[u(t-1)t^{2}]

  • 因为当t< 0时,u(t-1)t^{2}=0,因此可以用延迟定理
  • 根据延迟定理2:\mathcal {L}[u(t-1)t^{2}]=e^{-s}\mathcal {L}[(t+1)^{2}]
  • e^{-s}\mathcal {L}[(t+1)^{2}]=e^{-s}\mathcal {L}[(t^{2}+2t+1]=e^{-s}(\frac{2!}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s})
  • 因此\mathcal {L}[u(t-1)t^{2}]=e^{-s}(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s})
  • 图像见视频35:00~36:40

十,计算\mathcal {L}^{-1}[\frac{1+e^{-\pi s}}{s^{2}+1}]

  • \mathcal {L}^{-1}[\frac{1+e^{-\pi s}}{s^{2}+1}]=\mathcal {L}^{-1}[\frac{1}{s^{2}+1}]+\mathcal {L}^{-1}[\frac{e^{-\pi s}}{s^{2}+1}]
  • 当表达式中存在指数时,如e^{-\pi s},就要用到逆变换的唯一性:
  • \mathcal {L}^{-1}[\frac{1}{s^{2}+1}]=u(t)sin(t)
  • \mathcal {L}^{-1}[\frac{e^{-\pi s}}{s^{2}+1}]=\mathcal {L}^{-1}[e^{-\pi s}\frac{1}{s^{2}+1}]
  • 利用延迟定理1:\mathcal {L}^{-1}[e^{-\pi s}\frac{1}{s^{2}+1}]=u(t-\pi )sin(t-\pi )=-u(t-\pi )sin(t)
  • 因此\mathcal {L}^{-1}[\frac{1+e^{-\pi s}}{s^{2}+1}]=u(t)sin(t)-u(t-\pi )sin(t)
  • 0< t< \pi时,u(t)=1u(t-\pi )=0
  • \dpi{150} t\geq \pi时,u(t)=1u(t-\pi )=1
  • 结果\mathcal {L}^{-1}[\frac{1+e^{-\pi s}}{s^{2}+1}]=\left\{\begin{matrix} sin(t) &0< t< \pi \\ 0 & t\geq \pi \end{matrix}\right.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值