第二十二讲 延迟定理

一,单位阶跃函数:

  • 如图:,它有三个定义:
  • u(t)为单位阶跃函数,那么u(t-a)表示单位阶跃函数向右平移a个单位,如图:
  • u_{a}(t)=u(t-a)

二,单位方框函数:

  • u_{ab}(t)=u_{a}(t)-u_{b}(t)=u(t-a)-u(t-b)
  • f(t)\cdot u_{ab}(t)如图:
  • 意义:去掉了f(t)在区间[a,b]以外的部分。

三,单位阶跃函数的拉普拉斯变换:

  • \mathcal {L}[u(t)]=\int_{0}^{\infty }u(t)e^{-st}dt
  • 因为当t> 0时,u(t)=1,所以:
  • \mathcal {L}[u(t)]=\int_{0}^{\infty }u(t)e^{-st}dt=\int_{0}^{\infty }e^{-st}dt=\frac{1}{s}s> 0
  • \mathcal {L}[1]=\frac{1}{s}(查表)

四,逆变换的唯一性:

  • 如图:
  • \mathcal {L}[f_{1}(t)]=\mathcal {L}[f_{2}(t)]=\mathcal {L}[f_{3}(t)]=\mathcal {L}[f_{4}(t)]=\mathcal {L}[f(t)]=\int_{0}^{\infty }f(t)e^{-st}dt
  • 因为拉普拉斯变换只关注\dpi{150} [0,\infty ]这段区间,所以在这段区间内相等的函数,变换后的结果相等(无法区别)。
  • 那么:\mathcal {L}^{-1}[f(t)]=?
  • 规定:\mathcal {L}^{-1}[f(t)]=u(t)\cdot f(t)
  • 如图:

五,延迟定理(t域平移定理):

  • \mathcal {L}[f(t-a)]a> 0)不能用一个包含\mathcal {L}[f(t)]的式子表示
  • 为什么不能表示?
  • 因为拉普拉斯变换只关注\dpi{150} [0,\infty ]区间内的函数,如果f(t)的区间是[-a,\infty ],那么向右平移a后会多出原负轴上的一段
  • 如图:
  • 但是,如果乘上一个单位阶跃函数u(t-a),使当t< 0时,u(t-a)f(t-a)=0
  • 则以下延迟定理1成立:
  • \mathcal {L}[u(t-a)f(t-a)]=e^{-as}F(s)=e^{-as}\mathcal {L}[f(t)]
  • 如图:
  • 另一个方便计算的等价公式——延迟定理2:
  • \mathcal {L}[u(t-a)f(t)]=e^{-as}\mathcal {L}[f(t+a)]
  • 这时,可以和指数位移定律做个比较:
  • 指数位移定律:\mathcal {L}[e^{at}\cdot u(t-a)f(t-a)]=F(s-a),见第十九讲第五节

六,证明\mathcal {L}[u(t-a)f(t-a)]=e^{-as}F(s)

  • \mathcal {L}[u(t-a)f(t-a)]=\int_{0}^{\infty }e^{-st}u(t-a)f(t-a)dt
  • t_{1}=t-at=t_{1}+a
  • \int_{0}^{\infty }e^{-st}u(t-a)f(t-a)dt=\int_{-a}^{\infty }e^{-s(t_{1}+a)}u(t_{1})f(t_{1})dt_{1}
  • =e^{-as}\int_{-a}^{\infty }e^{-st_{1}}u(t_{1})f(t_{1})dt_{1}
  • 因为当t_{1}< 0时,u(t_{1})=0;当t_{1}> 0时,u(t_{1})=1
  • 所以e^{-as}\int_{-a}^{\infty }e^{-st_{1}}u(t_{1})f(t_{1})dt_{1}=e^{-as}\int_{0}^{\infty }e^{-st_{1}}f(t_{1})dt_{1}=e^{-as}F(s)=e^{-as}\mathcal {L}[f(t)]
  • 这里严重注意:\int_{0}^{\infty }e^{-st_{1}}f(t_{1})dt_{1}\neq \mathcal {L}[f(t_{1})]=\int_{0}^{\infty }e^{-st}f(t_{1})dt

七,证明\mathcal {L}[u(t-a)f(t)]=e^{-as}\mathcal {L}[f(t+a)]

  • 已知\mathcal {L}[u(t-a)f(t-a)]=e^{-as}F(s)=e^{-as}\mathcal {L}[f(t)]
  • t+a替换t
  • \mathcal {L}[u(t-a)f(t+a-a)]=e^{-as}\mathcal {L}[f(t+a)]
  • \mathcal {L}[u(t-a)f(t)]=e^{-as}\mathcal {L}[f(t+a)]

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值