一,单位阶跃函数:
- 如图:
,它有三个定义:
- 设
为单位阶跃函数,那么
表示单位阶跃函数向右平移a个单位,如图:
二,单位方框函数:
如图:
- 意义:去掉了
在区间
以外的部分。
三,单位阶跃函数的拉普拉斯变换:
- 因为当
时,
,所以:
,
(查表)
四,逆变换的唯一性:
- 如图:
- 因为拉普拉斯变换只关注
这段区间,所以在这段区间内相等的函数,变换后的结果相等(无法区别)。
- 那么:
- 规定:
- 如图:
五,延迟定理(t域平移定理):
(
)不能用一个包含
的式子表示
- 为什么不能表示?
- 因为拉普拉斯变换只关注
区间内的函数,如果
的区间是
,那么向右平移a后会多出原负轴上的一段
- 如图:
- 但是,如果乘上一个单位阶跃函数
,使当
时,
- 则以下延迟定理1成立:
- 如图:
- 另一个方便计算的等价公式——延迟定理2:
- 这时,可以和指数位移定律做个比较:
- 指数位移定律:
,见第十九讲第五节
六,证明:
- 设
,
- 则
- 因为当
时,
;当
时,
- 所以
- 这里严重注意:
七,证明:
- 已知
- 将
替换
: