第二十二讲 对角化分解和幂公式

一,对角化分解

A = S Λ S − 1 A=S\Lambda S^{-1} A=SΛS1

S − 1 A S = Λ S^{-1}AS=\Lambda S1AS=Λ
A表示具有n个线性无关的x(特征向量)的矩阵
S表示由x组成的可逆方阵,称作特征向量矩阵
Λ \Lambda Λ表示由A的λ(特征值)作为对角元素的对角矩阵
比较:A=LU(消元化分解),A=QR(正交化分解)

二,矩阵的幂公式

A k = S Λ k S − 1 A^{k}=S\Lambda ^{k}S^{-1} Ak=SΛkS1

A k x = λ k x A^{k}x=\lambda ^{k}x Akx=λkx

A和 A k A^{k} Ak具有相同的特征向量
如果所有λ均满足|λ|<1,那么当k→∞时, A k A^{k} Ak→0

三,从特征值判断矩阵是否可对角化

性质1:如果A的λ各不相同,那么A的x都线性无关,可对角化

性质2:如果A有相同的λ,那么无法确定A的x是否线性无关

如果A是单位矩阵,λ都=1,而x都线性无关
如果A是退化矩阵(上一讲),λ相同,但x只有一个

四,应用:求解差分方程 u k + 1 = A u k u_{k+1}=Au_{k} uk+1=Auk

前提:A可对角化

根据方程规律可导出: u k + 1 = A u k = A k + 1 u 0 u_{k+1}=Au_{k}=A^{k+1}u_{0} uk+1=Auk=Ak+1u0</

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值