每天一篇论文 312/365 CoSLAM: Collaborative Visual SLAM in Dynamic Environments

摘要

研究了多摄像机动态环境下基于视觉的同步定位与建图问题。这些摄像机可以独立移动,可以安装在不同的平台上。所有摄像机协同工作,建立一个全局地图,包括静态背景点的三维位置和移动前景点的轨迹。在定位和映射过程中,我们引入了摄像机间姿态估计和摄像机间映射来处理动态目标。为了进一步增强系统的鲁棒性,我们保持了每个地图点的位置不确定性。为了方便摄像机之间的操作,我们根据摄像机的视图重叠将摄像机分组,并实时管理摄像机组的分割和合并。实验结果表明,该系统能在高动态环境下稳定工作,在静态环境下能得到更准确的结果。

贡献

我们通过协方差矩阵来保持每个地图点的位置不确定性,并在有新的观测值时迭代地优化地图点的位置。该设计提高了系统在处理复杂场景时的鲁棒性和准确性。进一步,通过分析地图点的三角剖分一致性,将其分为动态和静态两类。错误的特征匹配导致的错误点也会被检测并移除。为了在动态环境中进行鲁棒定位,我们同时使用动态点和静态点来估计具有视场重叠的所有摄像机的姿态。我们根据摄像机的视角重叠将其分成若干组。同一组中的相机共享一个公共视图,并协同工作以实现健壮的映射和定位。组可以拆分
或者当摄像机分离或相遇时合并。

系统结构

四个SLAM组件是“摄像机姿态估计”、“地图构建”、“点分类”和“摄像机分组”。我们系统的主管道遵循传统的顺序结构自运动(SFM)方法。假设所有的摄像机都看到相同的初始场景来初始化系统。之后,“相机姿态估计”组件通过将3D地图点注册到2D图像特征来计算每帧的相机姿态。新的地图点由“地图构建”组件生成。在每个帧上,点都被“点分类”组件分类为不同的类型。系统始终保持摄像机之间的视图重叠信息。“相机分组”组件将相机分成不同的组,其中具有视图重叠的相机位于同一组中。当摄像机相遇或分离时,这些组可以合并或分离。
在这里插入图片描述

摄像机间姿态估计

相机A在第n帧的姿态不能单独确定,因为它只观察运动对象(灰色正方形)。但是,可以确定其相对于相机B的相对姿态。因此,我们可以同时使用静态和动态点来确定所有的相机姿势 只有当摄像机姿态已知时,才能计算出动态点的三维坐标。因此,我们的系统实际上同时估计了摄像机的姿态和动态点的三维位置。我们将摄像机间的姿态估计问题表示为重投影误差的最小化,
在这里插入图片描述
加粗样式

建图

在这里插入图片描述

点分类

在这里插入图片描述
当相机组中的任何相机移开并且与其他相机没有视图重叠时,相机组将被拆分。这种情况如图7所示。相机3、4和3、5之间的边将被删除,因为它们不再具有公共特征点。因此,原始图形被分成两个连接的组件,每个组件在当前帧处形成一个新的摄影机组。图8提供了一个真实的例子。四个摄像头被分成两组,其中红色和绿色摄像头共用一个视图,蓝色和黄色摄像头共用另一个视图。
在这里插入图片描述

协同估计效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

发布了132 篇原创文章 · 获赞 10 · 访问量 7736
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览