OpenAI最新研究——利用指令层次结构应对LLM攻击

研究人员提出一种指令层次结构,通过定义不同指令优先级来增强LLM的安全性,减少prompt攻击风险。实验显示,这种方法显著提高了模型鲁棒性,且在应对未知攻击时具有泛化性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ec7729880cbb3802b24efbcd8d2f37c4.png

深度学习自然语言处理 原创
作者:无穷小敏

今天要给大家介绍一篇OpenAI的在今年4月19日发表的一篇研究,该研究提出了一种指令层次结构(instruction hierarchy),以减少LLM被攻击的风险,提高模型的鲁棒性。

可能有些小伙伴平时更关注大模型的性能,但是大模型安全在工业界,特别是AI模型落地时,是非常重要的一个考量。例如之前很火的prompt攻击方式“奶奶漏洞”,通过让GPT扮演奶奶睡前讲故事,可以套路GPT,让他说出某些正版软件的密钥😂😂。很显然这会给LLM公司带来法律风险。虽然这种直接注入漏洞已经被修复了,但是现在LLM结合工具/Agent之后,会有更多间接注入攻击让我们的LLM没有按照希望的方式去工作。

为了解决这个问题,这篇研究提出了一种指令层次结构instruction hierarchy)。它明确定义了不同指令的优先级,以及当不同优先级的指令发生冲突时,LLM应该如何表现。通过这种方式,LLM会区别开系统指令和来自不受信任用户的指令之间的优先级,而不是像之前一样对所有的prompt都一视同仁。再根据优先级冲突时制定的策略以规范LLM的表现,从而减少LLM被攻击的风险。

这篇研究还提出了一种自动数据生成方法,来演示这种层次指令的跟踪行为,从而教会LLM有选择地忽略权限较低的指令。实验表明在几乎不影响LLM的标准能力的情况下,极大地提高了模型的鲁棒性。特别是即使在对训练期间从未见过的攻击类型也是如此!说明这种方法在应对未知的攻击时也是有一定的泛化性的。

接下来让

### 如何在 Python 中使用 OpenAILLM 要在 Python 中使用 OpenAI 的大型语言模型 (LLM),可以通过安装 `openai` 库并与 API 进行交互实现。以下是具体方法: #### 安装依赖库 首先,需要确保已安装必要的 Python 库。可以使用以下命令安装所需的包: ```bash pip install openai langchain ``` #### 配置 OpenAI API 密钥 为了调用 OpenAI 的服务,需设置环境变量或直接在代码中提供 API 密钥。推荐的方式是通过环境变量配置密钥以提高安全性。 ```python import os os.environ["OPENAI_API_KEY"] = "your-api-key-here" ``` 或者,在脚本开头导入并初始化 OpenAI 模块时传递密钥: ```python from openai import OpenAI client = OpenAI(api_key="your-api-key-here") ``` #### 调用 OpenAI 大型语言模型 下面是一个简单的例子,展示如何利用 GPT-3 或其他支持的模型生成文本响应[^4]。 ```python from openai import OpenAI def generate_text(prompt, model_name='gpt-3.5-turbo'): client = OpenAI() response = client.chat.completions.create( model=model_name, messages=[ {"role": "user", "content": prompt}, {"role": "assistant", "content": ""} ] ) return response.choices[0].message.content.strip() prompt = "Alice has a parrot. What animal is Alice's pet?" generated_response = generate_text(prompt) print(generated_response) ``` 上述代码片段展示了如何发送提示给指定的大规模预训练语言模型,并获取其返回的回答。这里选择了较新的聊天接口版本 `chat.completions.create()` 方法作为示范。 对于更复杂的场景,比如结合本地文档处理流程,则可能涉及多个阶段的工作流设计。例如先解析 PDF 文件内容再转化为向量形式存入索引数据库以便后续检索操作等步骤[^2][^3]。 最后值得注意的是实际部署过程中还需要考虑性能优化以及成本控制等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值