BiANet:用于快速高效实现RGB-D数据显著性目标检测的双边注意力模型

本文提出了一种名为BiANet的双边注意力网络,用于RGB-D显著物体检测任务。该模型利用前景优先和背景优先的互补注意机制,从深度图像中获取前景和背景信息,实现高性能的显著目标检测。BiANet在多个数据集上表现出优越性能,并具备实时运行速度,适用于实际应用。
摘要由CSDN通过智能技术生成

点击上方“计算机视觉工坊”,选择“星标”

干货第一时间送达

论文、代码地址:在公众号「计算机视觉工坊」,后台回复「BiANet」,即可直接下载。

简介

现有的大多数RGB-D显著物体检测(SOD)方法通常集中关注于深度图像突出的前景区域。然而,忽略了背景也可以为SOD方法提供重要的信息。为了获得良好的性能,我们可以从互补的前景和背景信息联合预测突出对象。因此,本文提出了一种用于RGB-D SOD任务的双边注意力网络(BiANet)。具体来说,提出了一个具有互补注意机制的双边注意模块(BAM):前景优先(FF)注意和背景优先(BF)注意。FF的注意力集中在前景区域,呈现出逐渐细化的风格,而BF集中在背景区域,用于恢复潜在有用的突出信息。利用所提出的BAM模块,BiANet可以捕获更有意义的前景和背景线索,并将更多的注意力转移到细化前景和背景区域之间的不确定细节上。

本文主要贡献

  1. 提出了一个简单而有效的双边注意模块(BAM),从有着丰富的前景和背景信息的深度图像中协同探索前景和背景线索。

  2. BiANet在九个标准度量下,在六个流行的RGB-SOD数据集上实现了更好的性能,并提供了比最先进的方法更好的视觉效果(例如,包含更多的细节和锐利的边缘)。

  3. BiANet在NVIDIA GeForce RTX2080Ti GPU的不同设置下,运行速度为34fps∼80fps。是实际应用一个可行的解决方案。

与其他方法的比较的可视化图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值