GEE生物量碳储量——利用sens和MK检验方法计算1987-2022年森林地上生物量AGB和碳储量的时空变化特征

本文利用Google Earth Engine (GEE)结合sens敏感性分析和Mann-Kendall (MK)方法,研究1987-2022年间森林地上生物量AGB和碳储量的时空变化特征。通过对影响因素的敏感性分析和时间序列数据的趋势检测,评估森林管理和碳排放控制的科学依据。主要涉及GEE平台上的数据处理和统计分析技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:

本文是将之前已经处理好的森林生物量和碳储量数据保存到GEE Assets中,然后分别将单张影像导入到代码编辑器中,构建一个时间序列集合,并且这里需要用到的是我们给影像添加指定的时间属性,这样方便进行下一步的时序分析和空间预测。

首先,需要收集1987年至2022年期间森林地上生物量AGB和碳储量数据。该数据可以通过森林清查数据、卫星遥感数据等途径获取。然后,根据这些数据,可以使用sens(敏感性分析)和MK(Mann-Kendall)方法计算时空变化特征。

敏感性分析是一种常用的敏感度评价方法,它可以通过改变影响因素的值并观察模型输出结果的变化,来评估模型对影响因素的敏感性。利用敏感性分析方法,可以评估AGB和碳储量与气候因素(如温度、降水等)之间的关系,以及各种影响因素对AGB和碳储量时空变化的影响程度。

Mann-Kendall方法是一种非参数统计方法,用来研究时间序列数据的趋势性。该方法可以检测出时间序列数据的变化趋势和变化点,从而评估AGB和碳储量时空变化趋势的显著性。

综合使用sens和MK方法,可以对AGB和碳储量的时空变化特征进行全面评估和分析,从而为森林管理和碳排放控制提供科学依据。

Sens方法

(也称为敏感度分析)是一种用于评估模型输出结果对输入参数变化的敏感性的方法。它可以帮助确定哪些因素对

<think>好的,用户的问题是关于在Google Earth Engine (GEE)上进行森林储量遥感估测时需要提取哪些特征参数以及如何进行参数优化。我需要先回忆一下相关的遥感特征参数,然后考虑GEE平台的支持情况。 首先,森林储量估测通常使用光学遥感数据,比如Landsat或Sentinel-2,以及雷达数据如Sentinel-1。特征参数可能包括光谱特征,比如各种植被指数(NDVI、EVI等),还有纹理特征,比如灰度共生矩阵(GLCM)的对比度、同质性等。此外,地形数据如高程、坡度、坡向也可能被用作辅助参数。雷达的后向散射系数极化信息也可能有用。 接下来是特征参数的优选方法。常见的优化方法有皮尔逊相关系数分析,用于筛选与地面实测数据相关性高的特征。还有逐步回归、LASSO回归等机器学习中的特征选择方法。主成分分析(PCA)可以用来降维,减少冗余。随机森林XGBoost这类模型本身可以提供特征重要性评分,帮助选择重要参数。 然后需要结合GEE的具体功能。GEE提供了大量数据集,比如Landsat、Sentinel系列,以及DEM数据。用户可以使用GEE的API提取这些数据,计算植被指数纹理特征。在参数优化方面,GEE支持JavaScriptPython,可以集成机器学习库如ee.Classifier,进行特征重要性评估。 可能还需要考虑地面实测数据的获取,因为特征优选需要依赖这些数据进行监督学习。此外,时间序列分析也可能重要,比如使用多时相的NDVI来捕捉植被生长变化,从而提高模型精度。 用户可能的问题可能涉及具体如何在GEE中实现这些特征提取,比如代码示例,或者如何验证模型精度。此外,可能想知道不同传感器数据的比较,比如光学雷达数据哪个更有效,或者如何处理高维特征带来的过拟合问题。 需要确保回答的结构清晰,分点列出特征参数优化方法,并给出GEE中的具体操作建议。同时,根据用户提供的引用,虽然引用的文献是关于目标姿态估计FPGA实现的,可能与当前问题无关,但可能需要注意是否有其他更相关的引用可用,但用户提供的可能没有,所以暂时忽略这些引用或仅作为格式示例。 最后,生成相关问题时要围绕特征参数选择、优化方法GEE工具使用、模型构建等方面展开,帮助用户进一步探索。</think>在Google Earth Engine (GEE) 上进行森林储量遥感估测时,特征参数的选择与优化是模型精度的关键。以下是特征提取与参数优化的技术路径: --- ### 一、核心特征参数类型 1. **光谱特征** - 植被指数:$NDVI = \frac{NIR - Red}{NIR + Red}$,$EVI$,$SAVI$(土壤调整植被指数) - 波段反射率:可见光(蓝、绿、红)、近红外(NIR)、短波红外(SWIR) - 光谱衍生指标:红边波段、叶绿素吸收特征 2. **纹理特征** - 基于灰度共生矩阵(GLCM)的统计量:对比度、熵、相关性、同质性 - 计算方法: $$ \text{Contrast} = \sum_{i,j} |i-j|^2 \cdot P(i,j) $$ 其中$P(i,j)$为像素值$i$$j$的联合概率分布[^1]。 3. **地形特征** - 高程(DEM)、坡度、坡向、地形湿度指数(TWI) 4. **雷达特征**(如Sentinel-1) - 后向散射系数(VV/VH极化)、极化分解参数 5. **时间序列特征** - 多时相NDVI变化率、季节积分(如最大NDVI) --- ### 二、参数优化方法 1. **相关性筛选** - 计算特征与地面实测储量的皮尔逊相关系数,保留$|r| > 0.3$的特征[^2]。 2. **机器学习特征重要性评估** ```python # GEE中随机森林特征重要性示例 classifier = ee.Classifier.smileRandomForest(50).train( features=trainingData, classProperty='carbon_stock', inputProperties=featureList ) importance = classifier.explain().get('importance') ``` 输出特征重要性排序,剔除重要性低于阈值的参数。 3. **降维技术** - 主成分分析(PCA):将高光谱数据压缩至前3-5个主成分 - 波段比值法:如$SWIR/NIR$减少光照差异影响 4. **正则化方法** - LASSO回归:通过$L1$正则化自动实现特征选择 $$ \min_{\beta} \left( \| y - X\beta \|^2 + \lambda \|\beta\|_1 \right) $$ --- ### 三、GEE实现流程 1. **数据准备** ```javascript var landsat = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterDate('2020-01-01', '2020-12-31') .median(); var dem = ee.Image("NASA/NASADEM_HGT/001"); ``` 2. **特征计算** ```javascript // 计算NDVI var ndvi = landsat.normalizedDifference(['B5', 'B4']).rename('NDVI'); // 计算坡度 var slope = ee.Terrain.slope(dem); // 纹理特征(以NDVI为例) var glcm = ndvi.glcmTexture({size: 3}); ``` 3. **特征优选与建模** - 使用`ee.Classifier`训练随机森林/XGBoost,导出特征重要性 - 通过交叉验证评估特征组合性能(如RMSE最小化) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值