视觉SLAM笔记(22) RGB-D相机模型

本文介绍了RGB-D相机的工作原理,包括红外结构光和飞行时间法,并探讨了相机输出的彩色图和深度图的配对处理。同时,文章分析了RGB-D相机在红外光干扰和透射材质物体上的使用局限。

视觉SLAM笔记(22) RGB-D相机模型


1. 深度相机原理

相比于双目相机通过视差计算深度的方式
RGB-D 相机的做法更为“主动”一些,它能够主动测量每个像素的深度

目前的 RGB-D 相机按原理可分为两大类:

  1. 通过 红外结构光(Structured Light)来测量像素距离
    如 Kinect 1 代、 ProjectTango 1 代、 Intel RealSense 等;

  2. 通过 飞行时间法(Time-of-flight, ToF)原理测量像素距离
    如 Kinect 2 代和一些现有的 ToF 传感器等

在这里插入图片描述

无论是 结构光 还是 ToF, RGB-D 相机都需要 向探测目标发射一束光线(通常是红外光)

在结构光原理中,相机根据返回的结构光图案,计算物体离自身的距离
而在 ToF中,相机向目标发射脉冲光,然后根据发送到返回之间的光束飞行时间,确定物体离自身的距离

ToF 原理和激光传感器十分相似,不过激光是通过逐点扫描来获取距离
而 ToF相机则可以获得整个图像的像素深度,这也正是 RGB-D

### 关于视觉SLAM中点云拼接的技术实现 #### 点云拼接的核心概念 点云拼接是将来自不同视角的深度图像转换为三维空间中的点云,并通过估计相机位姿将其合并到统一的世界坐标系下[^1]。这一过程通常依赖于RGB-D传感器获取的数据,其中包括彩色图深度图像。 #### RGB-D SLAM框架下的点云拼接流程 在RGB-D SLAM系统中,点云拼接主要分为以下几个部分: 1. **相机运动估计** 使用PnP算或其他几何方来计算相邻帧之间的相对变换矩阵(旋转平移)。这一步的关键在于提取特征点并匹配它们的位置关系。例如,在两帧之间调用`estimateMotion`函数完成姿态估计[^2]: ```cpp RESULT_OF_PNP estimateMotion(FRAME& frame1, FRAME& frame2, CAMERA_INTRINSIC_PARAMETERS& camera); ``` 2. **二维点转三维点** 根据相机内参模型,将像素坐标(u,v,d)映射回世界坐标系中的三维点(x,y,z)[^3]。具体公式如下所示: \[ x = d \cdot (u - c_x) / f_x,\quad y = d \cdot (v - c_y) / f_y,\quad z=d \] 3. **点云配准与融合** 配准是指利用已知的姿态信息对齐两个独立采集的点云集;而融合则是指去除重复区域并将所有有效数据组合起来形成最终的大规模场景表示形式。这里需要用到诸如ICP(iterative closest point)之类的优化策略以及降噪处理手段以提高重建质量[^4]。 #### 开发环境配置建议 为了顺利开展基于C++语言的实际开发工作,推荐按照以下方式设置项目构建工具链(CMake): ```cmake # 声明要求的 cmake 最低版本 cmake_minimum_required(VERSION 2.8) # 声明一个 cmake 工程 project(joinMap) # 定义编译的模式 set(CMAKE_BUILD_TYPE Release) # 添加c++ 11标准支持 set(CMAKE_CXX_FLAGS "-std=c++11 -O3") # 寻找OpenCV库 find_package(OpenCV REQUIRED) # 添加头文件 include_directories(${OpenCV_INCLUDE_DIRS}) # 添加Eigen头文件 include_directories("/usr/include/eigen3/") # 寻找PCL库 find_package(PCL REQUIRED COMPONENTS common io) # 添加头文件 include_directories(${PCL_INCLUDE_DIRS}) # 添加编译选项 add_definitions(${PCL_DEFINITIONS}) # 添加一个可执行程序 add_executable(joinMap joinMap.cpp) # 将库文件链接到可执行程序上 target_link_libraries(joinMap ${OpenCV_LIBS} ${PCL_LIBRARIES}) ``` 上述脚本确保了必要的第三方库被正确引入,从而简化后续编码过程中涉及的各种操作逻辑。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值