关于相机与激光雷达数据采集与标定

本文记录了一个车路协同项目的传感器标定过程,涉及相机和激光雷达的联合标定。在标定过程中遇到了时间戳同步问题、相机内参和外参的计算挑战。通过使用MATLAB工具、ROS包以及自定义Python代码进行标定,最终通过微调旋转矩阵解决了坐标系匹配问题。总结了标定过程中调整内参、旋转向量和平移向量的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做一个关于车路协同的项目,需要做一个路侧系统,传感器有摄像头和激光雷达。相机和激光雷达联合标定费了老半天劲。在此记录一下。

  1. 雷达时间戳不对,导致摄像头和雷达的数据无法对齐。‘’

解决办法:修改雷达驱动发布点云消息时的时间戳

  1. 相机内参标定可以使用MATLAB,ROS的camera_calibration包。但是使用MATLAB的工具包时只能计算出来相机内参和相机畸变参数,相机投影矩阵只能自己计算(投影矩阵和相机内参的区别也就在于投影矩阵融入了畸变参数)。python代码如下:
import cv2
import numpy as np

intrinsicmtx = np.array([[3282.04407377046,	0,	1285.36005742231],
[0,	3304.32265017942, 1048.50567777262],
[0, 0,	1]])
dist=np.array([-0.550994259036344,	0.480339307652613, 0, 0])
projectmtx,roi=cv2.getOptimalNewCameraMatrix(intrinsicmtx ,dist,(2560 ,1440),0)
print(projectmtx)

而使用ROS包则可以直接给出投影矩阵,缺点就是需要棋盘格在图片上的x、y、skew(旋转)、size(大小)的变化需要满足他的要求才可以进行标定,所以最好直接连着相机进行标定,录rosbag可能会不满足他的条件。

  1. ROS2订阅保存图片python代码
import rclpy
from rclpy.node import Node

from std_msgs.msg import String

import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
from cv_bridge import CvBridgeError
path='/home/wangbin/calib/img/' #存放图片的位置

class ImageSubscriber(Node):

    def __init__(self):
        super().__init__('minimal_subscriber')
        self.bridge = CvBridge()
        self.subscription = self.create_subscription(
            Image,
            '/hk_opencv_example/image_raw',
            self.listener_callback,
            10)
        self.subscription  # prevent unused variable warning

    def listener_callback(self, msg):
        try:
            cv_image = self.bridge.imgmsg_to_cv2(msg,"bgr8")
        except CvBridgeError as e:
            print(e)
        timestr = '%.6f' %  (float(msg.header.stamp.sec) + 
### 相机激光雷达融合的目标检测算法 多传感器数据融合技术对于提高自动驾驶车辆中的目标检测性能至关重要。通过结合来自不同模态的数据,可以显著提升系统的鲁棒性准确性。 #### 融合方法概述 常见的相机激光雷达融合策略主要分为早期融合、中期融合以及晚期融合三种方式: - **早期融合**:在特征提取之前将原始数据进行拼接处理。例如,在三维空间中将图像像素映射到点云坐标系下形成密集的RGB-D表示形式[^1]。 - **中期融合**:先分别从各个单源获取初步特征表达再加以组合。比如利用卷积神经网络(CNNs)独立学习视觉特征几何结构特性之后实施交互操作来增强表征能力[^4]。 - **晚期融合**:各自完成分类预测后再做决策层面的信息汇总。这通常涉及到置信度加权平均或其他机制以综合考虑各子模型的意见输出最终结果[^3]。 #### 实现案例分析 一种具体实现方案是AVOD(Aggregate View Object Detection),该架构设计旨在解决无人驾驶场景下的物体识别难题。其核心思想在于构建一个多视角聚合视图,并在此基础上执行高效而精准的对象定位任务。此过程中不仅充分利用了摄像头所捕捉的颜色纹理细节,同时也借助LiDAR提供的精确距离测量优势来进行更可靠的障碍物判断。 ```python import numpy as np from avod.core import anchor_generator, feature_extractor, fusion_layer def detect_objects(camera_image, lidar_points): anchors = anchor_generator.generate_anchors() camera_features = feature_extractor.extract_camera_features(camera_image) lidar_features = feature_extractor.extract_lidar_features(lidar_points) fused_features = fusion_layer.fuse_features(camera_features, lidar_features) predictions = model.predict(fused_features) return predictions ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值