房屋立面测绘——手持激光及架站激光数据对比

之前写过关于房屋立面测绘的方法教程。测区之前是使用架站激光雷达进行作业的,这次刚好有台新设备进行测试,项目测区也不远,便把之前测区选了一小块重新拿手持雷达扫描了一道,进行对比分析。希望对大家今后在设备的选择上有帮助。

如果有小伙伴需要了解房屋立面测绘的详细方法, 可以点击下方链接参考我前面的文章。如果觉得文章有帮助,记得点赞收藏加关注,后面不定期会有教程分享。
三维扫描房屋立面测绘方法及在风貌改造、院落整治及外立面改造竣工验收中的应用

上次教程数据测区是一条历史久远的老街道,房屋以两三层砖瓦房为主,也有7,8层楼的小区。街道较为狭窄,架站激光需要从两侧进行扫描才能保证两三层砖瓦房数据完整。手持激光需要举起设备进行扫描。

设备情况

架站激光:Faro 350m测程
手持激光:100m测程(与市面上大部分设备参数一致)

对比情况
整体对比

上图为架站激光整体情况,下图为手持激光整体情况,两个数据从整体看没有任何太大的差异。
架站激光
手持激光

局部细节对比

选择三个不同建筑区域来进行对比,局部细节对比,从 1、点云密度; 2、点云精度; 3、点云画面观感三个方面进行对比。

以下数据:左边为手持激光雷达数据;右边为架站激光雷达数据。

  • 区域一(三层砖房)

1、点云密度
架站数据建筑物轮廓更清晰

在这里插入图片描述
在这里插入图片描述

2、点云精度
精度基本一致

在这里插入图片描述

3、点云画面观感
手持的更为简洁,杂乱点较少。此处主要原因为雷达扫描方式的区别,架站激光扫描出来更多为条纹状,多线的手持雷达扫描数据更多更容易形成面状,给人第一观感更好。
在这里插入图片描述

  • 区域二(一层砖房)

1、点云密度
同上,架站数据建筑物轮廓更清晰

在这里插入图片描述
在这里插入图片描述

2、点云精度
同上,精度基本一致

在这里插入图片描述

3、点云画面观感
同上。手持的更为简洁,杂乱点较少。此处手持数据房顶更清晰。

在这里插入图片描述

  • 区域三(7层楼房)

结论与前两个区域基本一致,且此处手持激光雷达数据高程楼房数据相对架站数据缺失较多。

在这里插入图片描述
在这里插入图片描述

结论

1、从内业成图难易程度及精度分析:

在两种数据都比较完整无缺失的情况下。手持数据画面观感更好,在要求不是很高,墙体基本要素(门、窗、空调)能清晰辨认的情况下,画起来更容易;架站数据点云密度更高,轮廓更为明显,在要求建筑物要素更高(如需要管道,电表等小部件)的情况下,更为实用,此时若使用手持激光雷达数据进行内业处理时,需要更多的借用外业拍照进行辅助绘图。

在精度方面,在对房屋立面测绘要求部件进行绘制时,手持激光雷达精度与架站精度基本一致,无需担心精度问题。

从对比可以进一步印证,手持激光雷达在处理立面时能够基本满足绘图需求,但是对于精细化要求较高的古建筑等项目,就不太能够胜任。

2、外业点云数据采集注意点及点云数据质量对内业绘图存在的问题:

1、点云扫描需要根据现场房屋结构进行合理的路线规划,避免点云数据缺失 (没扫描完整)及部分强墙面遮挡缺失。

2、对于较高楼层且遮挡较多建筑物,合理增加架站数量,重叠密度,避免点云过于稀疏,难以辨认,尤其是高层的楼房及房屋屋顶。

4、在进行拼站处理时,需要仔细检查点云是否错层,导致精度损失。

### SLAM 技术与三维激光扫描仪的应用及原理 #### SLAM 技术概述 同步定位与地图构建(Simultaneous Localization and Mapping, SLAM),是一种允许机器人或移动设备在未知环境中运动的同时创建该环境的地图并确定其自身位置的技术。SLAM 解决方案通常依赖于传感器输入来实现这一目标,而这些传感器可以是视觉摄像头、超声波传感器或是激光雷达等。 对于手持式的三维激光扫描仪而言,SLAM 主要通过集成的激光雷达获取周围物体的距离信息,并利用惯性导航系统(Inertial Navigation System, INS)、全球卫星定位系统(Global Positioning System, GPS 或 RTK)以及相机辅助完成精确定位和姿态估计[^1]。 #### 三维激光扫描仪的工作机制 三维激光扫描仪能够发射脉冲形式的光束到被测对象表面,当光线反射回来时计算时间差从而得到距离值。由于每次只测量单个点的数据,因此需要不断改变方向重复此过程直至覆盖整个视场范围内的所有感兴趣区域。最终形成由大量离散点组成的密集点云表示实际物理空间中的几何形状。 具体来说,在智影S100这款设备上,它不仅限于简单的数据收集工作,而是进一步实现了点云实时解算的功能,即可以在现场即时处理所获得的信息并呈现给使用者查看。这种能力极大地提高了工作效率,使得即使是在复杂环境下也能迅速完成高质量的数据采集任务[^4]。 #### 应用实例分析 以城市更新改造项目为例,传统的建筑立面测绘往往耗时费力且难以达到理想的效果。然而借助像智影S100这样的先进工具,则可以通过快速精确地捕捉建筑物外观特征来进行高效的数字化记录。这主要得益于SLAM技术支持下的自动化程度较高——无需标记物即可自动拼接不同视角下取得的画面片段;再加上真彩色渲染选项的支持,生成的结果更加直观逼真[^2]。 另外值得注意的是,在执行此类作业之前应当做好充分准备,比如事先考察好场地情况以便合理安排行动路线,这样有助于保证后期图像合成的质量不受影响[^5]。 ```python # Python伪代码展示如何读取来自SLAM系统的点云数据 import numpy as np def load_point_cloud(file_path): """加载点云文件""" data = np.loadtxt(file_path) points = data[:, :3] # 假设前三列代表XYZ坐标 colors = data[:, 3:] if data.shape[1]>3 else None # 如果有颜色信息则提取出来 return points, colors points, colors = load_point_cloud('example.ply') print(f"Loaded {len(points)} points.") if colors is not None: print("With color information included.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龙山少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值