OpenCV——均值滤波

OpenCV 图像/点云处理 专栏收录该内容
16 篇文章 27 订阅

一、均值滤波

   均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即包括目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
   均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点 ( x , y ) (x,y) xy,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点 ( x , y ) (x,y) xy,作为处理后图像在该点上的灰度 g ( x , y ) g(x,y) gxy,即 g ( x , y ) = ∑ f ( x , y ) / m g(x,y)=∑f(x,y)/m gxy=fxy/m m m m为该模板中包含当前像素在内的像素总个数。
   均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

二、C++代码

#include <opencv2\opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main()
{
	Mat img = imread("hx.jpg");
	
	if (img.empty() )
	{
		cout << "请确认图像文件名称是否正确" << endl;
		return -1;
	}
	Mat result_3, result_9; //存放滤波结果,数字代表滤波器尺寸
	
	//调用均值滤波函数blur()进行滤波
	blur(img, result_3, Size(3, 3)); // 3x3卷积核
	blur(img, result_9, Size(9, 9)); // 9x9卷积核
	
	//显示处理结果
	imshow("origion pic ", img);
	imshow("3x3 result", result_3);
	imshow("9x9 salt", result_9);
	waitKey(0);
	return 0;
}

三、python代码

import cv2

img = cv2.imread('hx.jpg')
# -------------------均值滤波------------------
img_mean_3 = cv2.blur(img, (3, 3))
img_mean_9 = cv2.blur(img, (9, 9))
# ------------------可视化结果-----------------
cv2.imshow('origion_pic', img)
cv2.imshow('3x3_filtered_pic', img_mean_3)
cv2.imshow('9x9_filtered_pic', img_mean_3)
cv2.waitKey(0)

四、结果展示

1、原始图像

在这里插入图片描述

2、3x3卷积

在这里插入图片描述

3、9x9卷积

在这里插入图片描述

  • 2
    点赞
  • 2
    评论
  • 10
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值