可测函数列的几乎一致收敛于几乎处处收敛

本文详细介绍了数学分析中的三种函数序列收敛类型:一致收敛、几乎一致收敛和几乎处处收敛,以及它们的定义。特别地,讨论了叶戈罗夫定理,该定理说明了几乎处处收敛的函数序列可以转化为几乎一致收敛,前提是函数在可测集上几乎处处有限且集合的测度有限。这些概念和定理是理解实分析中函数序列收敛性质的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义1: f ( x ) , f 1 ( x ) , f 2 ( x ) , ⋯   , f k ( x ) , ⋯ f(x),f_1(x),f_2(x),\cdots,f_k(x),\cdots f(x),f1(x),f2(x),,fk(x),是定义在点集 E E E上的实值函数。若对于任意 ε > 0 \varepsilon > 0 ε>0,存在 K ∈ N K \in \mathbb{N} KN,使得对于任意 k ≥ K k \ge K kK,任意 x ∈ E x \in E xE,有 ∣ f k ( x ) − f ( x ) ∣ < ε , |f_k(x)-f(x)|<\varepsilon, fk(x)f(x)<ε,则称 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上一致收敛到 f f f,记作 f k ⟹ f f_k \Longrightarrow f fkf f k ⟶ u f f_k \stackrel{\mathrm{u}}{\longrightarrow}f fkuf(其中 u \mathrm{u} u表示一致)。

定义2: E E E是可测集,若 ∀ δ > 0 \forall \delta > 0 δ>0 ∃ E δ ⊂ E \exists E_{\delta} \sub E EδE,使得 m ( E \ E δ ) < δ m(E\backslash E_{\delta})< \delta m(E\Eδ)<δ,在 E δ E_{\delta} Eδ f k ⟹ f f_k \Longrightarrow f fkf,则称 { f k ( x ) } \{f_{k}(x)\} {fk(x)} E E E上几乎一致收敛到 f f f,记作 f k ⟶ a . u . f f_k \stackrel{\mathrm{a.u.}}{\longrightarrow}f fka.u.f(其中 a . u . \mathrm{a.u.} a.u.表示几乎一致)。

定义3: f ( x ) , f 1 ( x ) , f 2 ( x ) , ⋯   , f k ( x ) , ⋯ f(x),f_1(x),f_2(x),\cdots,f_k(x),\cdots f(x),f1(x),f2(x),,fk(x),是定义在点集 E ⊂ R n E \sub \mathbb{R}^n ERn上的广义实值函数。若存在 E E E中点集 Z Z Z,有 m ( Z ) = 0 m(Z)=0 m(Z)=0,及对每个元素 x ∈ E \ Z x \in E \backslash Z xE\Z,有 lim ⁡ k → ∞ f k ( x ) = f ( x ) \lim\limits_{k \rightarrow \infty}f_k(x)=f(x) klimfk(x)=f(x),则称 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上几乎处处收敛于 f ( x ) f(x) f(x),并简记为 f k → f f_k \rightarrow f fkf a . e . [ E ] \mathrm{a.e.}[E] a.e.[E] f k ⟶ a . e . f f_k \stackrel{\mathrm{a.e.}}{\longrightarrow} f fka.e.f

定理1(叶戈罗夫定理): f ( x ) , f 1 ( x ) , f 2 ( x ) , ⋯   , f k ( x ) , ⋯ f(x),f_1(x),f_2(x),\cdots,f_k(x),\cdots f(x),f1(x),f2(x),,fk(x),是可测集 E E E上 几乎处处有限的可测集,并且 m ( E ) < ∞ m(E)< \infty m(E)<,若 f k ⟶ f f_k \longrightarrow f fkf a . e . [ E ] \mathrm{a.e.}[E] a.e.[E],则 { f k ( x ) } \{f_k(x)\} {fk(x)}几乎一致收敛于 f ( x ) f(x) f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值