【自控笔记】3.3一阶系统的时间响应及动态性能
一、一阶系统的数学模型
凡是以一阶微分方程作为运动方程的控制系统,称为一阶系统。其数学模型为:

时间常数T是表征系统响应的唯一参数。T越小,输出响应上升得越快,调节时间越小。
二、一阶系统的典型响应
一阶系统典型响应如下图所示,可以看到,系统对不同的输入有不同的输出响应曲线。根据不同的稳态误差要求,可以得到对应的调节时间指标。(卢老师乃神人也!)

重要特性:系统对输入信号导数的响应,等于系统对该输入信号响应的导数。该特性适用于任意阶线性定长系统。
三、二阶系统的数学模型
凡是以二阶微分方程作为运动方程的控制系统,称为二阶系统。其数学模型为:

根据系统特征方程:

可以求得特征根:

由特征根可知,阻尼比ξ不同,系统的闭环极点也不同
阻尼范围 | 闭环特征根分布 |
---|---|
负阻尼ξ<0 | 有一对正实部的共轭复根,系统发散 |
零阻尼ξ=0 | 有一对纯虚根,系统等幅振荡 |
欠阻尼0<ξ<1 | 有一对实部为负的共轭复根,系统时间响应具有振荡特性 |
临界阻尼ξ=1 | 有一对相等的负实根(重根),响应无振荡,无超调 |
过阻尼ξ>1 | 有两个不相等的负实根,等价于两个一阶环节串联,响应无振荡,无超调 |
四、欠阻尼二阶系统动态性能随极点位置变化规律
欠阻尼二阶系统动态性能指标主要为上升时间、超调量与调节时间,如下图所示:

由此可见,超调量σ%仅与阻尼比ξ有关。ξ越大,σ%越小,系统稳定性越好。
欠阻尼二阶系统极点分布图如下所示(下半平面关于负实轴对称):

从图中可知,极点的模长为无阻尼自然振荡频率ωn,β为极点与负实轴的夹角。
根据卢老师的 授课讲解,可得欠阻尼二阶系统动态性能随极点位置变化规律如下:

感谢卢老师!