ViT模型架构和CNN区别

文章介绍了VisionTransformer(ViT)如何将图像数据转化为序列处理,通过步骤如patching、位置编码和TransformerEncoder实现全局视野和长距离依赖。相比于CNN,ViT在数据效率、泛化能力和可解释性上有优势,但需要大量预训练数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

Vision Transformer如何工作

ViT模型架构

ViT工作原理解析

步骤1:将图片转换成patches序列

步骤2:将patches铺平

步骤3:添加Position embedding

步骤4:添加class token

步骤5:输入Transformer Encoder

步骤6:分类

总结

Vision Transformer(VIT)与卷积神经网络(CNN)相比

数据效率和泛化能力:

可解释性和可调节性:


Vision Transformer如何工作

我们知道Transformer模型最开始是用于自然语言处理(NLP)领域的,NLP主要处理的是文本、句子、段落等,即序列数据。但是视觉领域处理的是图像数据,因此将Transformer模型应用到图像数据上面临着诸多挑战,理由如下:

  1. 单词、句子、段落等文本数据不同,图像中包含更多的信息,并且是以像素值的形式呈现。
  2. 如果按照处理文本的方式来处理图像,即逐像素处理的话,即使是目前的硬件条件也很难。
  3. Transformer缺少CNNs的归纳偏差,比如平移不变性和局部受限感受野。
  4. CNNs是通过相似的卷积操作来提取特征,随着模型层数的加深,感受野也会逐步增加。但是由于Transformer的本质,其在计算量上会比CNNs更大。
  5. Transformer无法直接用于处理基于网格的数据,比如图像数据。

为了解决上述问题,Google的研究团队提出了ViT模型,它的本质其实也很简单,既然Transformer只能处理序列数据,那么我们就把图像数据转换成序列数据就可以了呗。下面来看下ViT是如何做的。

ViT模型架构

我们先结合下面的动图来粗略地分析一下ViT的工作流程,如下:

  1. 将一张图片分成patches;
  2. 将patches铺平;
  3. 将铺平后的patches的线性映射到更低维的空间;
  4. 添加位置embedding编码信息;
  5. 将图像序列数据送入标准Transformer encoder中去;
  6. 在较大的数据集上预训练;
  7. 在下游数据集上微调用于图像分类。

ViT工作原理解析

我们将上图展示的过程近一步分解为6步,接下来一步一步地来解析它的原理。如下图:

在这里插入图片描述

步骤1:将图片转换成patches序列

这一步很关键,为了让Transformer能够处理图像数据,第一步必须先将图像数据转换成序列数据,但是怎么做呢?假如我们有一张图片: x ∈ R H × W × C x \in R^{H \times W \times C} x∈RH×W×C,patch 大小为 p p p,那么我们可以创建 N N N个图像 patches,可以表示为 x p ∈ R ( p 2 C ) x_p \in R^{(p^2C)} xp​∈R(p2C),其中 N = H W P 2 N = \frac{HW}{P^2} N=P2HW​, N N N就是序列的长度,类似一个句子中单词的个数。在上面的图中,可以看到图片被分为了9个patches。

步骤2:将patches铺平

在原论文中,作者选用的 patches 大小为16,那么一个 patch 的 shape 为(3, 16, 16),维度为3,将它铺平之后大小为3x16x16=768。即一个 patch 变为长度为 768 的向量。

不过这看起来还是有点大,此时可以使用加一个 Linear transformation,即添加一个线性映射层,将 patch 的维度映射到我们指定的 embedding 的维度,这样就和NLP中的词向量类似了。

步骤3:添加Position embedding

与 CNNs 不同,此时模型并不知道序列数据中的 patches 的位置信息。所以这些 patches 必须先追加一个位置信息,也就是图中的带数字的向量。

实验表明,不同的位置编码 embedding 对最终的结果影响不大,在 Transformer 原论文中使用的是固定位置编码,在 ViT 中使用的可学习的位置 embedding 向量,将它们加到对应的输出 patch embeddings 上。文章来源地址https://www.yii666.com/blog/433888.html

步骤4:添加class token

在输入到Transformer Encoder之前,还需要添加一个特殊的 class token,这一点主要是借鉴了 BERT 模型。

添加这个 class token 的目的是因为,ViT 模型将这个 class token 在 Transformer Encoder 的输出当做是模型对输入图片的编码特征,用于后续输入 MLP 模块中与图片 label 进行 loss 计算

步骤5:输入Transformer Encoder

将 patch embedding 和 class token 拼接起来输入标准的Transformer Encoder中。

步骤6:分类

注意 Transformer Encoder 的输出其实也是一个序列,但是在 ViT 模型中只使用了 class token 的输出,将其送入 MLP 模块中,去输出最终的分类结果。

总结

ViT的整体思想还是比较简单,主要是将图片分类问题转换成了序列问题。即将图片patch转换成 token,以便使用 Transformer 来处理。

听起来很简单,但是 ViT 需要在海量数据集上预训练,然后在下游数据集上进行微调才能取得较好的效果,否则效果不如 ResNet50 等基于 CNN 的模型。

 


Vision Transformer(VIT)与卷积神经网络(CNN)相比

在某些情况下可以表现出更强的性能,这是由于以下几个原因:

全局视野和长距离依赖:ViT引入了Transform模型的注意力机制,可以对整个图像的全局信息进行建模。相比之下,CNN在处理图像时使用局部感受野,只能捕捉图像的局部特征。

ViT通过自注意力层可以建立全局关系,并学习图像中不同区域之间的长距离依赖关系,从而更好地理解图像的结构和语义
可学习的位置编码:ViT通过对输入图像块进行位置编码,将位置信息引入模型中。这使得ViT可以处理不同位置的图像块,并学习它们之间的位置关系,

相比之下,CNN在卷积和池化过程中会导致空间信息的丢失,对位置不敏感


数据效率和泛化能力:

ViT在大规模数据集上展现出出色的泛化能力。由于ViT基于Transform模型,它可以从大量的数据中学习到更丰富、更复杂的图像特征表示。

相比之下,CNN在小样本数据集上可能需要更多的数据和调优才能取得好的结果。


可解释性和可调节性:

ViT的自注意机制使其在解释模型预测和注意力权重时具有优势。

相比之下,CNN的特征表示通常较难解释,因为它们是通过卷积和池化操作获得的。

 

 

 

 

 

 

 

 

 

### 视觉Transformer与卷积神经网络区别 #### 架构差异 视觉TransformerViT)采用自注意力机制来处理输入图像,而卷积神经网络CNN)依赖于局部感受野权重共享的卷积操作。这种架构上的根本不同使得两者在特征提取方式上存在显著差异[^1]。 对于ViT而言,整个模型基于多头自注意模块构建而成;相比之下,传统的CNN则由一系列堆叠起来的标准二维卷积层组成。这些卷积滤波器能够捕捉到空间位置相邻像素间的关系,从而有效地学习到了低级模式如边缘或纹理等特性[^2]。 然而,在面对更复杂的全局上下文理解需求时——比如长距离依赖关系建模方面——仅依靠固定大小窗口扫描的传统方法可能会显得力不从心。此时,具备全图范围内的交互能力就成为了Vision Transformers的一大优势所在[^3]。 #### 数据预处理流程对比 当准备用于训练的数据集之前,两种类型的算法也表现出不同的偏好: - **CNN**: 需要将原始图片裁剪成较小尺寸后再送入网络内部逐层传递计算; - **ViT**: 输入前会先被分割成为多个固定长度序列片段(patch),之后再通过线性变换映射至高维向量表示形式以便后续编码过程中的进一步加工处理[^4]。 #### 参数效率考量 尽管最初版本的ViTs可能拥有较多参数数量,但随着研究进展技术改进,现在已出现了许多轻量化设计方案能够在保持性能的同时减少资源消耗。与此同时,某些特定应用场景下U-Net这样的结构也能提供相当不错的精确度却只需较少可调参量支持其运作良好表现。 ```python import torch.nn as nn class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv_layer = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3)) def forward(self, x): return self.conv_layer(x) from transformers import ViTModel vit_model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值