《BASALT》视觉前端源码解析

本课程基于VladyslavUsenko的basalt-mirror项目,深入解析SLAM算法的实现细节,包括数据集加载、前后端初始化、光流跟踪、特征点处理等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考源码:https://github.com/VladyslavUsenko/basalt-mirror 注释版
在此基础上添加更详细的注释
课程《深蓝学院SLAM开源算法解析》

vio.cpp

step1: 命令行参数解析

-在这里插入图片描述

step2:load camera calibration

step3:加载不同的数据集,视觉前端初始化

在这里插入图片描述

  1. 查看支持哪些类型的数据集(euroc、bag、uzh、kitti)
    在这里插入图片描述

step4:后端初始化

在这里插入图片描述

step5:地图保存线程的创建

在这里插入图片描述

step6:开辟新线程输入数据

在这里插入图片描述

  • 1.Feed functions,将图像push到前端opt_flow的输入队列中
    在这里插入图片描述
    输出和输出都是一个使用tbb实现的线程安全队列
    在这里插入图片描述
    输入的数据类型
    在这里插入图片描述
    输出数据类型
    在这里插入图片描述
    光流的构造:1.点到点光流 2.帧到帧光流
    在这里插入图片描述
  • 2.IMU feed function, 将IMUpush到后端

光流跟踪

  • 构造函数->开启处理线程
    在这里插入图片描述

  • 处理线程->processFrame
    在这里插入图片描述
    3.processFrame

  • 初始化
    在这里插入图片描述
    addPoints()
    在这里插入图片描述
    detectKeypoints()
    在这里插入图片描述
    在这里插入图片描述
    trackPoints()
    在这里插入图片描述
    点到点光流跟踪 trackPoint()
    在这里插入图片描述
    当前帧的光流跟踪
    trackPointAtLevel()
    在这里插入图片描述
    以上,添加特征点的过程结束,接下来剔除外点。
    filterPoints();
    在这里插入图片描述

  • 追踪
    在这里插入图片描述

  • 输出

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秃头队长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值