圆的参数方程是如何推导的?

本文详细介绍了圆的三种参数表示形式,包括直角坐标下的标准方程,以及两种三角函数表示方式。重点讲解了如何从三角函数的角度推导出第三种参数方程,并通过三角函数万能公式解释了sinθ和cosθ的表达。最后,通过令t=tan²θ,得到了另一种形式的圆的参数方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 圆的三种参数表示

  已知圆的第一种参数方程为:
x 2 + y 2 = r x^2+y^2=r x2+y2=r
  圆的图像如下:
在这里插入图片描述

  通过上图,不难理解,圆的参数方程还可以用三角函数表示,也就是第二种参数表示方式,x值为余弦值,y值为正弦值:
x = r cos ⁡ ( θ ) y = r sin ⁡ ( θ ) x=r\cos (\theta) \\ y=r\sin (\theta) x=rcos(θ)y=rsin(θ)
   θ \theta θ的取值自然是 0 − 2 π 0-2\pi 02π。那么除了用三角函数表示之外,圆的方程还可以表示如下,也就是第三种参数表示:
x = 1 − t 2 1 + t 2 r y = 2 t 1 + t 2 r x=\frac {1-t^2}{1+t^2}r \\[1em] y=\frac {2t}{1+t^2}r x=1+t21t2ry=1+t22tr
   t t t的取值是全体实数。那这第三种表达方式是怎么推导出来的呢?答案还是三角函数。

2. 三角函数万能公式

  在第二种参数表达中, sin ⁡ θ \sin \theta sinθ cos ⁡ θ \cos \theta cosθ可以分别写作:
sin ⁡ ( θ ) = 2 tan ⁡ θ 2 1 + tan ⁡ 2 θ 2 cos ⁡ ( θ ) = 1 − tan ⁡ 2 θ 2 1 + tan ⁡ 2 θ 2 \sin (\theta)=\frac {2\tan \frac{\theta}{2}}{1+\tan^2 \frac {\theta}{2}}\\[1em] \cos (\theta)=\frac {1-\tan^2 \frac {\theta}{2}}{1+\tan^2 \frac {\theta}{2}} sin(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值