论文笔记:Non-stationary Transformers: Rethinking the Stationarity in Time Series Forecasting

本文探讨了不平稳时间序列预测中的挑战,提出了一种新的Transformer结构Non-stationaryTransformers,通过结合归一化和预测结果反平稳化,以及De-stationaryAttention机制,让Transformer能够学习并保持序列的个性化特征。实验展示了这种方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不平稳时间序列预测问题的Transformer

1 intro

1.1 背景

  • 时间序列的不平稳性(non-stationarity)是一个比较难处理,且真实世界中很常见的问题
    • 不平稳性指的是随着时间的变化,观测值的均值、方差等统计量发生变化
    • 不平稳性会导致在训练集训练的模型,在测试集上效果较差
      • 因为训练集和测试集属于不同时间,而不同时间的数据分布差异较大。
  • 目前解决这种统计量随时间变化的不平稳问题主要方法是,对时间序列数据做一些诸如归一化等平稳化处理
    • 例如对每个序列样本使用z-normalization处理成0均值1方差
    • 但是这种解决方法会对Transformer模型带来一个负面影响:
      • 平稳化后的序列虽然统计量一致了,但是这个过程中也让数据损失了一些个性化的信息,导致不同序列的Transformer中的attention矩阵趋同
        • over-stationarization
    • 对于一个序列的3个时间窗口的子序列,不进行归一化处理的attention分布差别过大
    • 使用了归一化处理后,3个序列的attention分布趋同了,缺失了各自的特征信息

1.2 论文思路

  • 论文提出了一种新的Transformer结构Non-stationary Transformers
    • 对输入序列的归平稳化处理的预测结果反平稳化
    • 让Transformer能够处理平稳化序列的同时,学习不平稳化数据中的attention规律

2  方法

2.1 平稳化处理+预测结果反平稳化

  • 对于每个输入序列,利用输入序列的均值和方差将其转换为0均值1方差的高斯分布,以此消除不同时间窗口时间序列统计量的差异
  • 对于模型的输出结果,使用均值和方差做反向处理,得到最终预测结果

2.2 De-stationary Attention

  • 为了让Transformer能够直接从平稳化前的时间序列中学习attention pattern,本文提出了De-stationary Attention
  • 对于每个Attention层,由于输入的是平稳化后的序列,其和平稳化前序列的关系可以表达成如下公式:

所以将Softmax式子最后两项去掉,得到:

  • ——>想要使用平稳化前的序列计算attention,核心就是去计算3项:
    • 平稳化的方差\sigma_x^2
    • Q在时间维度上的均值\mu_Q
    • 平稳化前序列经过Transformer得到的K
  • 论文采用一个MLP网络来学习这两个部分
    • MLP的输入是原始平滑前的时间序列

3 实验

非静态变压器是指通过探索时间序列预测中的静态性。在时间序列分析和预测中,静态性是指时间序列的平均值、方差和自协方差在时间上都保持不变。然而,许多实际应用中的时间序列数据往往是非静态的,其平均值、方差和自协方差在时间上变化。 非静态变压器是为了解决这个问题而提出的一种方法。通过探索时间序列的非静态性,可以更好地捕捉时间序列数据中的动态特征和趋势。非静态变压器采用了一种自适应的方式来处理时间序列数据,使得模型能够随着时间的推移自动调整参数和权重。 非静态变压器的核心原理是通过引入可学习的非静态参数,将时间序列的静态性和非静态性相结合。这样,模型可以根据数据的变化自动调整参数和权重,以适应时间序列的动态特征。通过这种方法,非静态变压器能够更准确地预测非静态时间序列数据的未来趋势和变化。 非静态变压器在时间序列预测领域具有广泛的应用。它可以应用于金融市场预测、经济指标预测、天气预测等各个领域。与传统的静态模型相比,非静态变压器具有更好的适应性和预测能力,能够更准确地捕捉时间序列数据中的动态特征和趋势,提高预测的准确性和精度。 总之,非静态变压器是一种通过探索时间序列的非静态性来提高预测精度的方法。它通过引入可学习的非静态参数,使得模型能够根据数据的变化自动调整参数和权重,更准确地预测非静态时间序列数据的未来趋势和变化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值