论文笔记:(INTHE)WILDCHAT:570K CHATGPT INTERACTION LOGS IN THE WILD

iclr 2024 spotlight reviewer 评分 5668

1 intro

  • 由大型语言模型驱动的对话代理(ChatGPT,Claude 2Bard,Bing Chat)
    • 他们的开发流程通常包括三个主要阶段
      • 预训练语言模型
      • 在被称为“指令调优”数据集上进行微调,以使模型的行为与人类偏好保持一致
      • 可选地应用基于人类反馈的强化学习(RLHF),以进一步优化模型的响应
    • 虽然基础模型训练数据丰富且容易获得,但关键的指令调优数据集往往是专有的,这导致希望推进该领域的研究人员在可访问性上存在差距
  • 现有的用户-聊天机器人互动数据集主要有两种类型
    • 自然使用案例
      • 包括实际用户互动,大多是专有的
    • 专家策划的集合
      • 研究人员通常不得不依赖专家策划的数据集
      • 这些数据集在分布上通常与现实世界的互动不同,而且通常限于单轮对话
  • 为了弥补这一差距,本文介绍了(INTHE)WILDCHAT数据集
    • 一个全面的多轮、多语种数据集
    • 包括通过ChatGPT和GPT-4 API支持的聊天机器人服务收集的570,000次完整对话,涵盖超过150万次互动轮次
  • WILDCHAT服务于多个研究目的
### 非正式环境下学习的方法与资源 非正式环境下的学习方法(Learning in the Wild)通常涉及利用真实世界的数据和场景来进行模型训练和验证。这种方法可以显著提高模型的泛化能力和适应性,尤其是在面对复杂多样的实际应用场景时。 #### 数据集的选择 为了实现有效的非正式环境学习,选择合适的数据集至关重要。例如,在计算机视觉领域,WILD数据集被用于评估模型在未见过的真实环境中表现如何[^2]。这类数据集的特点在于其多样性和真实性,能够更好地反映现实世界的复杂情况。 #### 自监督学习的应用 自监督学习是一种重要的技术手段,它允许模型仅依赖于输入数据本身而无需额外标注即可完成预训练过程。正如研究显示,当采用标准自我监督范式对神经网络进行初步训练之后再微调,则可以在多个下游任务上取得良好效果。此过程中可能会借助其他已有的高质量预训练模型作为辅助工具,比如MiDaS网络用来生成代理标签以指导新架构的设计与发展方向。 #### 跨域迁移能力测试 除了基本的功能外还需要考虑系统的跨域适用性即能否顺利迁移到未曾接触过的全新情境当中去。为此可以通过引入更多不同类型的基准集合如TUM RGB-D 和 NYU Depth V2 来全面衡量算法的表现水平并据此做出相应调整优化直至达到预期目标为止。 ```python import torch from torchvision import models, transforms from PIL import Image def load_model(): model = models.resnet50(pretrained=True) model.eval() return model transform_pipeline = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image_path = 'example.jpg' img = Image.open(image_path).convert('RGB') input_tensor = transform_pipeline(img) model = load_model() with torch.no_grad(): output = model(input_tensor.unsqueeze(0)) print(output.argmax().item()) ``` 上述代码片段展示了加载预训练ResNet-50模型并对单张图片分类预测的一个简单例子。这是构建更复杂的端到端解决方案的基础之一。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值