1 介绍
用正确的参数在分布式系统上启动指定的脚本
用法:
accelerate launch [arguments] {training_script} --{training_script-argument-1} --{training_script-argument-2} ...
{training_script} | 要并行启动的脚本的路径 |
{training_script-argument-1}..... | 训练脚本的参数 |
2 可选参数
-h, --help | 显示帮助信息并退出 |
--config_file CONFIG_FILE | 用于启动脚本中默认值的配置文件 |
-m, --module | 将每个进程更改为将启动脚本解释为Python模块,执行行为与 ‘python -m’ 相同 |
--debug | 是否在出错时打印torch.distributed的堆栈跟踪 |
--no_python | 跳过在训练脚本前添加‘python’,直接执行它。 当脚本不是Python脚本时很有用 |
-q, --quiet | 将启动堆栈跟踪中的子进程错误静音,只显示相关的回溯 仅适用于DeepSpeed和单进程配置 |
3 硬件选择参数
--cpu | 是否强制在CPU上进行训练 |
--multi_gpu | 是否应该启动分布式GPU训练 |
--tpu | 是否应该启动TPU训练 |
--ipex | 是否应该启动Intel Pytorch Extension (IPEX)训练 |
4 资源选择参数
--mixed_preci |