- 博客(1538)
- 资源 (7)
- 收藏
- 关注
原创 论文略读:MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
LoRA的改进。
2024-10-26 11:02:27
213
原创 论文略读:The Power of Noise: Redefining Retrieval for RAG Systems
省流:在RAG中,噪声文档不仅没有对系统性能造成负面影响,反而能够显著提高系统的准确性。
2024-10-26 10:51:58
349
原创 论文略读:X-VARS: Introducing Explainability in Football Refereeingwith Multi-Modal Large Language Model
数据集+模型。
2024-10-26 09:12:39
319
原创 论文略读:MathBench: Evaluating the Theory and Application Proficiency of LLMswith a Hierarchical Mathem
数学benchmark,涵盖从小学、初中、高中、大学不同难度,从基础算术题到高阶微积分、统计学、概率论等丰富类别的数学题目。
2024-10-26 08:34:12
159
原创 论文略读: Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probab
ICLR 2024。
2024-10-25 11:53:11
152
原创 论文笔记:SIBO: A Simple Booster for Parameter-Efficient Fine-Tuning
ACL 2024。
2024-10-25 10:50:47
692
1
原创 论文笔记:LaDe: The First Comprehensive Last-mile Delivery Dataset from Industry
2023 KDD 最后一公里数据集
2024-10-22 17:42:30
1254
原创 论文略读:CBLab: Scalable Traffic Simulation with Enriched Data Supporting
2023 KDD。
2024-10-21 14:05:23
349
原创 论文略读:FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph (PKDD2023)
这是首次完成城市级别的细粒度交通预测。
2024-10-21 09:59:46
344
原创 accelerate 笔记:多个gpu training,一个gpu infer
首先,test_loader 不参与accelerate的prepare。其次,只在main_process的地方进行infer。
2024-09-09 09:20:20
212
原创 论文笔记:GeoFormer: Predicting Human Mobility using GenerativePre-trained Transformer (GPT)
2023 sigspatial humob workshop
2024-08-31 22:12:25
938
原创 论文笔记:Estimating future human trajectories from sparse time series data
sigspatial 2023 humob竞赛paper。
2024-08-31 20:29:03
509
1
原创 论文笔记:Multi-perspective Spatiotemporal Context-aware NeuralNetworks for Human Mobility Prediction
给定一组空间单元𝑃,对于任何空间单元𝑝 ∈ 𝑃,我们可以使用[𝜆, 𝜑]来指示其纬度和经度假设这些空间单元中有一些用户𝑈,任何用户𝑢𝑖 ∈ 𝑈都有一定的轨迹𝑇 𝑟𝑎𝑗𝑖 = [(𝑡𝑖,1, 𝑝𝑖,1), (𝑡𝑖,2, 𝑝𝑖,2), ...] 随着时间𝑡 ∈ 𝑇的变化目标是利用用户的前𝛼步时空信息来推断接下来𝛽步的空间位置即,这个问题可以看作是找到一个复杂的映射关系𝑓,并利用人类移动的历史信息实现下一个位置的预测。
2024-08-31 17:40:36
338
原创 论文辅助笔记:Cell-Level Trajectory Prediction Using Time-embeddedEncoder-Decoder Network
1 train_task1.py2dataset.py2.1Task1TrainDataset2.2 Task1ValDataset3model.py4val_task1.py
2024-08-31 16:45:13
304
原创 论文笔记:GEO-BLEU: Similarity Measure for Geospatial Sequences
—>论文基于 BLEU,提出了GEO-BLEU。
2024-08-27 20:48:53
605
1
原创 NLP笔记:BLEU
机器译文: the the the the the the the.机器翻译:The cat sat on the mat.机器翻译:The cat sat on the mat.人工翻译:The cat is on the mat.参考译文:The cat is on the mat.此时 1-gram会把所有the都算上,匹配度为7/7。参考译文:The cat is on the mat.人工翻译:The cat is on the mat。——>取最小值之后,1-gram为2/7。
2024-08-27 15:52:35
637
原创 论文辅助笔记:Large Language Models are Zero-Shot Next LocationPredictors
trajectory_split暂时略去。
2024-08-25 09:00:18
326
原创 数据集笔记: FourSquare - NYC and Tokyo Check-ins
【代码】数据集笔记: FourSquare - NYC and Tokyo Check-ins。
2024-08-24 20:21:20
614
原创 论文笔记:Large Language Models are Zero-Shot Next LocationPredictors
下一个地点预测通常定义为根据个体的历史移动轨迹预测其下一个将访问的地点的问题,这些轨迹通常表示为时空轨迹(轨迹)时空点 p = (t, l) 是一个元组,其中 t 表示时间戳,l 表示地理位置。轨迹 P = p1, p2, ..., pn 是个体访问的 n 个时空点的时间有序序列根据 DeepMove的方法筛选轨迹筛选出记录少于 10 条的用户选择了 72 小时的间隔作为区分不同轨迹的阈值任何拥有少于五条轨迹的用户都被排除在分析之外。
2024-08-24 16:06:10
691
原创 论文笔记:Human Mobility Prediction Challenge: Next LocationPrediction using Spatiotemporal BERT
在这个挑战中,提供了一个覆盖75天、涵盖10万个个体的主要都市区的流动性数据集。目标区域被细分为500米 × 500米的单元,构成一个200 × 200的网格。个体移动以30分钟间隔和500米的网格单元进行离散化任务1涉及使用80,000个个体的75天流动数据和20,000个目标个体的60天数据来预测剩余的15天流动轨迹任务2要求使用60天的日常活动流动数据、15天的紧急流动数据和22,500个个体的60天日常活动流动数据,为2,500个目标个体预测剩余的15天紧急流动轨迹用户ID。
2024-08-17 09:48:46
335
2
原创 论文笔记:Cell-Level Trajectory Prediction Using Time-embeddedEncoder-Decoder Network
首先将原始收集的轨迹数据分段,形成单元级轨迹。
2024-08-17 09:03:16
243
2
原创 pandas 笔记crosstab
用来计算两个(或更多)因子的交叉表(即频率表、列联表或透视表)。这个功能特别适用于统计分析和数据探索阶段,帮助理解不同变量之间的关系。
2024-08-16 22:08:37
577
原创 论文笔记:OneBit: Towards Extremely Low-bit Large Language Models
202402 arxiv
2024-08-09 22:59:12
642
原创 pytorch笔记:BatchNorm1d
用于 running_mean 和 running_var 计算的值。可设置为 None,表示累积移动平均(即简单平均)。对2D或3D输入应用批量归一化。
2024-07-30 12:54:07
297
原创 论文笔记:When LLMs Meet Cunning Questions: A Fallacy Understanding Benchmark for Large Language Models
弱智吧benchmark。
2024-07-27 11:51:45
376
1
原创 trackintel笔记:读取csv
以{‘旧名称’:‘trackintel标准名称’}格式重命名列名。此函数需要的列包括:“user_id”、“tracked_at”、“latitude”和“longitude”pyproj.crs或字符串, 可选设置坐标参考系。该值可以是pyproj.CRS.from_user_input()接受的任何内容,例如权威字符串(如‘EPSG:4326’)或WKT字符串。
2024-07-24 09:57:26
286
原创 论文笔记:SynMob: Creating High-Fidelity Synthetic GPSTrajectory Dataset for Urban Mobility Analysis
SYN-CHENGDU和SYN-XI'AN。
2024-07-23 23:27:17
754
1
network embedding lecture slide
2023-01-01
python 实现 cmaes (调用方便)
2022-02-13
ASTGCN(AAAI 2019).pdf
2021-08-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅