近期学习百度Apollo,特在此博客作学习笔记来总结相关知识。
因为只关注apollo中定位和激光雷达3d感知部分,大致的学习思路是,首先阅读apollo源码中的帮助文档,学习Cyber RT相关知识以及apollo的3d障碍物感知,定位部分。接着查看部分源码。
一、首先介绍百度开源代码中文件结构内容
相信大家同我一样,刚开始碰到apollo完全是一筹莫展,所以十分有必要梳理整个源码的结构内容。
1.Apollo总的索引文档
目录:apollo/docs/README.md
其中quick start guide里面主要讲的是如何安装apollo等教程。
2.帮助文档,目录:apollo/docs
2.1 Quick Start Guide
- A hardware and software guide to setting up Apollo, segregated by versions
- quidkstart文件夹主要介绍如何安装apollo。
2.2 Technical Tutorial
- Everything you need to know about Apollo. Written as individual versions with links to every document related to that version.
- 该文件是Apollo5.0教程,推荐按照这个目录进行索引学习。目录:docs/apollo_5.0_technical_tutorial.md
2.3 Cyber
该文件夹下主要存放关于Cyber RT计算框架的相关知识文档。关于Cyber RT的总索引文档目录为:apollo/cyber/README.md
Cyber RT:
Apollo Cyber RT是百度自研得无人车计算任务实时并行计算框架,框架核心理念基于组件,通过组件实现有预先设定的“输入”、“输出”。实际上,在框架中,每个组件代表一个专用的算法模块。可以暂且理解为百度研发的升级版ROS。
Apollo Cyber RT is an open source, high performance runtime framework designed specifically for autonomous driving scenarios. Based on a centralized computing model, it is greatly optimized for high concurrency, low latency, and high throughput in autonomous driving.
During the last few years of the development of autonomous driving technologies, we have learned a lot from our previous experience with Apollo. The industry is evolving and so is Apollo. Going forward, Apollo has already moved from development to productization, with volume deployments in the real world, we see the demands for the highest level of robustness and performance. That’s why we spent years building and perfecting Apollo Cyber RT, which addresses that requirements of autonomous driving solutions.