手写点特征直方图(PFH)

PFH(Point Feature Histograms)是一种点云局部表面特征表达方法,通过邻域点对的距离和法线向量差统计分布。文章详细介绍了如何计算点云数据的法线、点对特征信息向量,并探讨了在PCL环境和不依赖PCL的两种实现方式,指出了PFH计算的计算量大、时间消耗高的问题。
摘要由CSDN通过智能技术生成

目录

一、PFH描述子

1.1 计算点云数据的法线

1.2 计算点对特征信息向量 ​编辑

 1.3 计算某点​编辑的 PFH 向量

二、代码实现

2.1在PCL环境下实现:

总结


一、PFH描述子

        PFH描述子是一种通过邻域点对之间的距离以及法线向量差来表达点特征的方法,原理是分区间统计某点周围所有邻域点对特征信息参数(\alpha,\phi ,\theta)的分布情况,并以分布直方图作为该点的特征,点的特征可以作为点云局部表面特征的表征。

查看源图像

1.1 计算点云数据的法线

        在点云数据中对点p_i进行k近邻搜索。用

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云兔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值