基于KITTI数据集的无人驾驶感知与传感器融合实现—(3)—图像的颜色空间特征提取
学习前言
没啥说的,这一章比较简单,哈哈哈,好好学习天天向上,这里是原作者项目链接: 连接.
一、RGB、HSV、HLS三种颜色域
这里就简单的对RGB、HSV、HLS三种颜色域进行简单的介绍吧。
RGB:
三原色光模式(RGB color model),又称RGB颜色模型或红绿蓝颜色模型,是一种加色模型,将红(Red)、绿(Green)、蓝(Blue)三原色的色光以不同的比例相加,以合成产生各种色彩光。
HSV:
==HSV(Hue, Saturation, Value)==是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。
这个模型中颜色的参数分别是:色调(H),饱和度(S),明度(V)。
- 色调H
用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,紫色为300°;
- 饱和度S
饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的程度就愈高,颜色的饱和度也就愈高。饱和度高,颜色则深而艳。光谱色的白光成分为0,饱和度达到最高。通常取值范围为0%~100%,值越大,颜色越饱和。
- 明度V
明度表示颜色明亮的程度,对于光源色,明度值与发光体的光亮度有关;对于物体色,此值和物体的透射比或反射比有关。通常取值范围为0%(黑)到100%(白)。
RGB和CMY颜色模型都是面向硬件的,而HSV(Hue Saturation Value)颜色模型是面向用户的。
HLS:
HLS 模式和 HSV 都是基于 RGB 的,是作为一个更方便友好的方法创建出来的。HSL 为 色相,饱和度,亮度,HSV 为色相,饱和度,明度。
二、代码实现&效果图
由于代码比较简单,也没用到什么API,所以我就直接上代码了。
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import cv2
# 读入图片
image = mpimg.imread('test_image/test4.jpg')
# 将图片从RGB转换为HLS空间,并分别提取h,l,s通道
def hls_select(img, thresh=(170, 255),channel = 'h'):
hls = cv2.cvtColor(img,cv2.COLOR_RGB2HLS)
# 提取h,l,s通道
if channel == 'h':
channel = hls[:,:,0]
#channel = channel.astype('uint8')/255
elif channel == 'l':
channel = hls[:,:,1]
#channel = channel.astype('uint8')/255
elif channel == 's':
channel = hls[:,:,2]
#channel = channel.astype('uint8')/255
#返回二进制图像
binary_output = np.zeros_like(channel)
binary_output[(channel >= thresh[0]) & (channel <= thresh[1])] = 1 # 将像素值大于170的变为1
return channel, binary_output
# 将图片从RGB转换为HSV空间,并分别提取h,s,v通道
def hsv_select(img, thresh=(170, 255),channel = 'h'):
hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV)
# 提取h,s,v通道
if channel == 'h':
channel = hsv[:,:,0]
#channel = channel.astype('uint8')/255
elif channel == 's':
channel = hsv[:,:,1]
#channel = channel.astype('uint8')/255
elif channel == 'v':
channel = hsv[:,:,2]
#channel = channel.astype('uint8')/255
#返回二进制图像
binary_output = np.zeros_like(channel)
binary_output[(channel >= thresh[0]) & (channel <= thresh[1])] = 1 # 将像素值大于170的变为1
return channel, binary_output
h_channel, h_binary = hls_select(image, thresh=(170, 255),channel = 'h')
l_channel, l_binary = hls_select(image, thresh=(170, 255),channel = 'l')
s_channel, s_binary = hls_select(image, thresh=(170, 255),channel = 's')
h_channel_hsv, h_binary_hsv = hsv_select(image, thresh=(170, 255),channel = 'h')
s_channel_hsv, s_binary_hsv = hsv_select(image, thresh=(170, 255),channel = 's')
v_channel_hsv, v_binary_hsv = hsv_select(image, thresh=(170, 255),channel = 'v')
# 可视化结果
f, (ax1, ax2, ax3, ax4, ax5, ax6) = plt.subplots(6, 3, figsize=(30, 20))
f.tight_layout()
ax1[0].imshow(image)
ax1[0].set_title('Original Image', fontsize=15)
ax1[1].imshow(h_channel)
ax1[1].set_title('h_channel', fontsize=15)
ax1[2].imshow(h_binary, cmap='gray')
ax1[2].set_title('HLS Thresholded h', fontsize=15)
ax2[0].imshow(image)
ax2[0].set_title('Original Image', fontsize=15)
ax2[1].imshow(l_channel)
ax2[1].set_title('l_channel', fontsize=15)
ax2[2].imshow(l_binary, cmap='gray')
ax2[2].set_title('HLS Thresholded l', fontsize=15)
ax3[0].imshow(image)
ax3[0].set_title('Original Image', fontsize=15)
ax3[1].imshow(s_channel)
ax3[1].set_title('s_channel', fontsize=15)
ax3[2].imshow(s_binary, cmap='gray')
ax3[2].set_title('HLS Thresholded s', fontsize=15)
ax4[0].imshow(image)
ax4[0].set_title('Original Image', fontsize=15)
ax4[1].imshow(h_channel_hsv)
ax4[1].set_title('h_channel_hsv', fontsize=15)
ax4[2].imshow(h_binary_hsv, cmap='gray')
ax4[2].set_title('HLS Thresholded h', fontsize=15)
ax5[0].imshow(image)
ax5[0].set_title('Original Image', fontsize=15)
ax5[1].imshow(s_channel_hsv)
ax5[1].set_title('s_channel_hsv', fontsize=15)
ax5[2].imshow(s_binary_hsv, cmap='gray')
ax5[2].set_title('HLS Thresholded s', fontsize=15)
ax6[0].imshow(image)
ax6[0].set_title('Original Image', fontsize=15)
ax6[1].imshow(v_channel_hsv)
ax6[1].set_title('v_channel_hsv', fontsize=15)
ax6[2].imshow(v_binary_hsv, cmap='gray')
ax6[2].set_title('HLS Thresholded v', fontsize=15)
plt.subplots_adjust(left=0., right=0.6, top=1., bottom=0., wspace=0., hspace=0.5)
plt.show()
三 、结论
相比而言, s通道对车道线和车辆目标的检测效果要由于其它通道, 由此可以在梯度空间中使用s通道图片进行边缘检测。