Py之torchvision:torchvision库的简介、安装、使用方法之详细攻略

Py之torchvision:torchvision库的简介、安装、使用方法之详细攻略

 

 

 

目录

torchvision库的简介

torchvision库的安装

torchvision库的使用方法

1、基础用法


 

 

 

相关文章
DL框架之PyTorch:PyTorch的简介、安装、使用方法之详细攻略
Py之torchvision:torchvision库的简介、安装、使用方法之详细攻略

 

torchvision库的简介

        torchvision包由流行的数据集、模型架构和常见的计算机视觉图像转换组成。

 

 

 

torchvision库的安装

pip install torchvision
conda install torchvision -c pytorch

 

 

torchvision库的使用方法

1、基础用法

python setup.py install
# or, for OSX
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

 

 

 

 

 

 

 

<think>好的,我现在要解决用户遇到的RuntimeError,具体是关于torchvision的nms操作符不存在的问题。首先,我需要理解这个错误的原因。用户可能在使用torchvision的nms函数时,遇到了版本不兼容的问题,或者安装torchvision版本不包含这个操作符。 根据常见情况,torchvision的nms操作符在较新的版本中可能需要从不同的模块导入,或者可能被弃用了。比如,在旧版本中,nms可能位于torchvision.ops中,但用户可能错误地调用了其他模块。也有可能用户安装torchvision版本过旧,根本没有这个操作符。 接下来,我需要考虑可能的解决方案。首先,检查torch和torchvision的版本是否匹配,并且是否是最新的。如果版本过旧,升级到适当版本可能解决问题。另外,用户可能需要正确导入nms函数,例如从torchvision.ops导入。 用户提到的引用中有关于HALCON的接口信息,但可能和这个问题无关,所以暂时忽略。不过,我需要确保提供的解决方案准确,可能需要查阅官方文档或社区讨论。例如,PyTorch论坛或GitHub issues中可能有类似的问题。 另一个可能性是用户的环境存在问题,例如torchvision没有正确编译或者安装时缺少依赖项。这时候重新安装或者编译可能会有效。此外,用户是否在使用CUDA版本和CPU版本之间的兼容性问题?比如,如果安装了CPU版本的PyTorch,而torchvision需要CUDA支持的操作符,这可能导致错误。 我还需要检查nms函数的正确用法。例如,用户是否正确传递了参数?比如,输入框的格式是否正确,是否传入了正确的参数顺序?如果参数类型不正确,也可能导致错误。 此外,可能用户使用的代码中调用了被弃用的函数,或者需要特定的后端支持。例如,某些操作符可能只在启用CUDA的情况下可用,而用户可能在CPU上运行。 总结可能的解决步骤: 1. 确认torch和torchvision版本,并升级到兼容版本。 2. 检查导入语句是否正确,如from torchvision.ops import nms。 3. 确保输入参数符合要求,如boxes的格式、score的维度等。 4. 检查是否安装了GPU版本的PyTorch,并且CUDA是否可用。 5. 尝试重新安装torchvision或从源码编译。 6. 查找社区是否有类似问题及解决方案。 同时,用户可能需要手动实现nms,作为临时解决方案,但效率可能不如内置操作符。 现在需要将这些步骤整理成用户容易理解的回答,并确保每个步骤清晰可行。另外,生成相关问题,帮助用户深入理解问题。</think>### 解决`torchvision::nms`操作符不存在的RuntimeError #### 1. 检查版本兼容性 PyTorch和torchvision的版本必须严格匹配。若版本过低或不兼容,可能导致操作符缺失。 **解决方法**: - 升级到官方推荐的组合版本(例如PyTorch 1.8+与torchvision 0.9+): ```bash pip install torch==1.13.1 torchvision==0.14.1 --extra-index-url https://download.pytorch.org/whl/cu117 ``` 根据CUDA版本调整命令[^1]。 #### 2. 确认导入方式 `nms`函数位于`torchvision.ops`模块中,需正确导入: ```python from torchvision.ops import nms boxes = torch.tensor([[1,2,3,4], [5,6,7,8]], dtype=torch.float32) scores = torch.tensor([0.9, 0.8]) keep_indices = nms(boxes, scores, iou_threshold=0.5) ``` #### 3. 验证CUDA支持 若需GPU加速,需安装CUDA版本的PyTorch: ```python import torch print(torch.cuda.is_available()) # 输出应为True ``` 若为`False`,重新安装支持CUDA的版本[^2]。 #### 4. 手动实现NMS(临时方案) 若环境限制无法升级,可手动实现NMS: ```python def manual_nms(boxes, scores, threshold): x1, y1, x2, y2 = boxes[:,0], boxes[:,1], boxes[:,2], boxes[:,3] areas = (x2 - x1) * (y2 - y1) order = scores.argsort(descending=True) keep = [] while order.size(0) > 0: i = order[0] keep.append(i.item()) xx1 = torch.max(x1[i], x1[order[1:]]) yy1 = torch.max(y1[i], y1[order[1:]]) xx2 = torch.min(x2[i], x2[order[1:]]) yy2 = torch.min(y2[i], y2[order[1:]]) inter = torch.clamp(xx2 - xx1, min=0) * torch.clamp(yy2 - yy1, min=0) iou = inter / (areas[i] + areas[order[1:]] - inter) mask = (iou <= threshold) order = order[1:][mask] return torch.tensor(keep) ``` #### 5. 重新编译torchvision 若从源码安装,确保编译时启用了所需组件: ```bash git clone https://github.com/pytorch/vision.git cd vision python setup.py install ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值