Py之alibi:alibi的简介(ALE/Anchor/ContraE/Counterfactual/IG/Kernel SHAP/PDP/PDV/PI/SimiEx)、安装、使用方法之详细攻略

Alibi是一个Python库,专注于机器学习模型的解释和检查,提供黑盒、白盒、局部和全局解释方法。包括ALE、Anchor、ContraE等多种解释技术,支持文本、表格和图像数据。文章介绍了Alibi的主要功能、方法和案例,如局部解释方法IG、Kernel SHAP,以及反事实实例和相似性说明,适合理解模型预测行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Py之alibi:alibi的简介(ALE/Anchor/ContraE/Counterfactual/IG/Kernel SHAP/PDP/PDV/PI/SimiEx)、安装、使用方法之详细攻略

导读:Alibi Explain是一个开源的Python库,用于机器学习模型的检查和解释。它提供了各种解释方法和示例,用于检查和解释机器学习模型。该库的重点是为分类和回归模型提供高质量的黑盒、白盒、局部全局解释方法的实现。它支持文本、表格和图像数据。
Alibi库提供了多种解释方法,包括局部解释全局解释,使用户能够解释模型的预测结果,并验证模型在不同数据集上的一致性和稳定性。Alibi库中,可解释性的方法包括ALE累积局部效应、Anchor锚点解释、ContraE对比解释方法、Counterfactual反事实实例、Prototypes由原型指导的反事实实例、RL基于强化学习的反事实实例、IG积分梯度、Kernel SHAP、PDP部分依赖、PDV部分依赖方差、PI置换重要性、SimiEx相似性说明、TreeSHAP。
五类可解释性方法如下所示:全局特因+局部必要+局部特因+反事实+相似比较

全局特征归因【ALE/PDP/PDV/PI】、局部必要特征【Anchor/ContraE】、局部特征归因【IG/Kernel SHAP/TreeSHAP】、反事实实例【Counterfactual/Prototypes/RL】、相似性说明【SimiEx】
1、全局特征归因衡量每个特征对模型整体响应的贡献。
>> ALE累积局部效应:通过计算每个特征在实例上变量和不变情况下的预测差异来测量它的影响。
>> PDP部分依赖:描述预测值如何依赖于单个特征,忽略其他特征。
>> PDV部分依赖方差:量化模型对输入的敏感性。
>> PI置换重要性:通过将特征置换为平均值,观察模型响应的变化来量化特征重要性。
2、局部必要特征:描述所需的最小特征集保证预测
>> Anchor锚点解释法:通过高精确度的 IF-THEN 规则来解释模型预测,考虑规则的精确度涵盖范围,以获得更有说服力的解释。anchor锚算法基于Ribeiro等人(2018)的《锚:高精度模型无关的解释》(Anchors: High-Precision Model-Agnostic Explanations)论文。Anchors 算法通过最大化涵盖范围的同时满足精确度约束,来发现最佳的锚点规则。它可以用于文本分类、表格型数据和图像的数据。它具有黑箱和白箱两种使用模式。与局部解释方法(如 LIME)相比,Anchors 考虑了两个重要因素:
>> 精确度(precision):锚点的准确性,表明在满足锚点条件的实例中,模型给出相同预测的概率。
>> 涵盖范围(coverage):锚点应用于的实例的比例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值