Py之alibi:alibi的简介(ALE/Anchor/ContraE/Counterfactual/IG/Kernel SHAP/PDP/PDV/PI/SimiEx)、安装、使用方法之详细攻略
导读:Alibi Explain是一个开源的Python库,用于机器学习模型的检查和解释。它提供了各种解释方法和示例,用于检查和解释机器学习模型。该库的重点是为分类和回归模型提供高质量的黑盒、白盒、局部和全局解释方法的实现。它支持文本、表格和图像数据。
Alibi库提供了多种解释方法,包括局部解释和全局解释,使用户能够解释模型的预测结果,并验证模型在不同数据集上的一致性和稳定性。Alibi库中,可解释性的方法包括ALE累积局部效应、Anchor锚点解释、ContraE对比解释方法、Counterfactual反事实实例、Prototypes由原型指导的反事实实例、RL基于强化学习的反事实实例、IG积分梯度、Kernel SHAP、PDP部分依赖、PDV部分依赖方差、PI置换重要性、SimiEx相似性说明、TreeSHAP。
五类可解释性方法如下所示:全局特因+局部必要+局部特因+反事实+相似比较全局特征归因【ALE/PDP/PDV/PI】、局部必要特征【Anchor/ContraE】、局部特征归因【IG/Kernel SHAP/TreeSHAP】、反事实实例【Counterfactual/Prototypes/RL】、相似性说明【SimiEx】
1、全局特征归因:衡量每个特征对模型整体响应的贡献。
>> ALE累积局部效应:通过计算每个特征在实例上变量和不变情况下的预测差异来测量它的影响。
>> PDP部分依赖:描述预测值如何依赖于单个特征,忽略其他特征。
>> PDV部分依赖方差:量化模型对输入的敏感性。
>> PI置换重要性:通过将特征置换为平均值,观察模型响应的变化来量化特征重要性。
2、局部必要特征:描述所需的最小特征集来保证预测。
>> Anchor锚点解释法:通过高精确度的 IF-THEN 规则来解释模型预测,考虑规则的精确度和涵盖范围,以获得更有说服力的解释。anchor锚算法基于Ribeiro等人(2018)的《锚:高精度模型无关的解释》(Anchors: High-Precision Model-Agnostic Explanations)论文。Anchors 算法通过最大化涵盖范围的同时满足精确度约束,来发现最佳的锚点规则。它可以用于文本分类、表格型数据和图像的数据。它具有黑箱和白箱两种使用模式。与局部解释方法(如 LIME)相比,Anchors 考虑了两个重要因素:
>> 精确度(precision):锚点的准确性,表明在满足锚点条件的实例中,模型给出相同预测的概率。
>> 涵盖范围(coverage):锚点应用于的实例的比例。