DB之VDB:向量数据库(Vector Database)的简介、常用库(Chroma/FAISS/Elasticsearch/Milvus/LanceDB/PGVector等)、使用方法之详细攻略

本文介绍了向量数据库的核心技术,对比了向量数据库与传统关系型数据库的区别,并重点讨论了FAISS和Chroma的特性。向量数据库用于非结构化数据的复杂语义匹配,而FAISS适合大规模处理,Chroma则易于快速搭建。还列举了Chroma和FAISS的使用方法及向量数据库的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DB之VDB:向量数据库(Vector Database)的简介、常用库(Chroma/FAISS/Elasticsearch/Milvus/LanceDB/PGVector等)、使用方法之详细攻略

目录

向量数据库的简介

1、向量数据库的核心技术

DB之VDB:基于LangChain解决知识向量数据库(RAG场景)中局部旧知识更新的问题—痛点、需求、解决方案、实战、优缺点

2、对比:向量数据库(非结构化+复杂语义匹配)、传统关系型数据库(结构化+关系型)

3、向量数据库对比

(1)、FAISS(2017年Facebook AI ,处理大规模+使用复杂)、Chroma(2023年6月,只支持CPU计算+可快速搭建)

(2)、Elasticsearch、Milvus

向量数据库的常用库

1、本地向量数据库:Chroma、FAISS、Elasticsearch、Milvus、LanceDB、PGVector

VDB之Chroma:Chroma/chromadb(一款优秀的向量数据库)的简介、安装、使用方法之详细攻略

VDB之Faiss:Faiss(大规模向量相似度高效检索库)的简介、安装、使用方法之详细攻略

LLMs之VDB:Elasticsearch的简介、安装和使用方法、案例应用之详细攻略

LLMs之VDB:LanceDB的简介、安装和使用方法、案例应用之详细攻略

2、联网向量数据库:Zilliz等

向量数据库的使用方法

1、基于LangChain框架

LLMs之KBQA之VDB:基于LangChain解决知识向量数据库(RAG场景)中局部旧知识更新的问题—痛点、需求、解决方案(提出基于对比文档哈希值的增量更新机制)、实战、优缺点


向量数据库的简介

        向量数据库是专门用来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值