Py之sentence-transformers:sentence-transformers的简介、安装、使用方法之详细攻略

文章介绍了Sentence-Transformers框架,它利用BERT等模型进行多语言句子、段落和图像嵌入,支持多种Transformers网络,可用于多种任务如语义相似性、聚类等。文章详细讲解了框架的安装和基本使用方法,以及提供的预训练模型资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Py之sentence-transformers:sentence-transformers的简介、安装、使用方法之详细攻略

目录

sentence-transformers的简介

1、一些亮点包括

2、可以使用此框架进行以下用途

3、支持的预训练模型

sentence-transformers的安装

sentence-transformers的使用方法

1、基础用法

(1)、如何使用已经训练好的Sentence Transformer模型来为另一个任务嵌入句子


sentence-transformers的简介

Sentence Transformers,它使用BERT等模型进行多语句、段落和图像嵌入。该框架提供了一种简单的方法来计算句子、段落和图像的稠密向量表示。这些模型基于Transformers网络,如BERT / RoBERTa / XLM-RoBERTa等,在各种任务中取得了最先进的性能。文本在向量空间中嵌入,以便相似的文本靠近,并可以使用余弦相似度有效地找到

我们提供了越来越多的面向100多种语言的最先进的预训练模型,针对各种用途进行了微调

此外,该框架允许轻松微调自定义嵌入模型,以在特定任务上实现最佳性能。有关完整的文档,请参阅 www.SBERT.net。

1、一些亮点包括

支持各种Transformers网络,包括BERT、RoBERTa、XLM-R、DistilBERT、Electra、BART等。

多语言和多任务学习

在训练过程中进行评估,以找到最佳模型

10多种损失函数,允许针对语义搜索、释义挖掘、语义相似性比较、聚类、三元组损失、对比损失等特定调整模型。

2、可以使用此框架进行以下用途

计算句子嵌入

语义文本相似性

聚类

释义挖掘

翻译句子挖掘

语义搜索

检索和重新排列

文本摘要

多语言图像搜索、聚类和重复检测

3、支持的预训练模型

我们提供了超过100种语言的大量预训练模型。一些模型是通用模型,而其他模型产生特定用例的嵌入。只需传递模型名称即可加载预训练模型:SentenceTransformer('model_name')。

地址Pretrained Models — Sentence-Transformers documentation

from sentence_transformers import SentenceTransformer

model = SentenceTransformer('model_name')

sentence-transformers的安装

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple sentence-transformers

sentence-transformers的使用方法

1、基础用法

(1)、如何使用已经训练好的Sentence Transformer模型来为另一个任务嵌入句子

# 首先下载一个预训练模型
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')

# 然后提供一些句子给模型
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.',
    'The quick brown fox jumps over the lazy dog.']
sentence_embeddings = model.encode(sentences)

# 现在有了一个带有嵌入的NumPy数组列表
for sentence, embedding in zip(sentences, sentence_embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding)
    print("")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值