Py之llama-parse:llama-parse(高效解析和表示文件)的简介、安装和使用方法、案例应用之详细攻略

Py之llama-parse:llama-parse(高效解析和表示文件)的简介、安装和使用方法、案例应用之详细攻略

目录

llama-parse的简介

llama-parse的安装和使用方法

1、安装

2、使用方法

第一步,获取API 密钥

第二步,安装LlamaIndex、LlamaParse

LLM之RAG之LlaMAIndex:llama-index(一块轻快构建索引来查询本地文档的数据框架神器)的简介、安装、使用方法之详细攻略

第三步,解析第一个 PDF 文件

第四步,将解析器集成为 SimpleDirectoryReader 中的默认 PDF 加载器:

llama-parse的案例应用


llama-parse的简介

2024年4月15日正式发布,LlamaParse 是由 LlamaIndex 创建的一个 API,用于高效解析和表示文件,以便使用 LlamaIndex 框架进行高效检索和上下文增强。

LlamaParse 可以直接与 LlamaIndex 集成。免费计划每天最多处理 1000 页。付费计划每周免费处理 7000 页,超过部分每页收费 0.3 美分。

llama-parse的安装和使用方法

1、安装

pip install -i https://mirrors.aliyun.com/pypi/simple llama-parse

pip install -i https://mirrors.aliyun.com/pypi/simple -qU llama-parse

# -q:这个参数表示安静模式(quiet),它会减少输出的信息只显示错误信息。
-U:这个参数表示升级模式(upgrade),它会升级指定的软件包到最新版本。

2、使用方法

第一步,获取API 密钥

首先,登录并从 LlamaCloud 获取一个 API 密钥。

第二步,安装LlamaIndex、LlamaParse

然后,确保你安装了最新版本的 LlamaIndex。
注意:如果你是从 v0.9.X 升级,我们建议你遵循我们的迁移指南,并且先卸载之前的版本。

pip uninstall llama-index  # 如果从 v0.9.x 或更早版本升级,请运行此命令
pip install -U llama-index --upgrade --no-cache-dir --force-reinstall

最后,安装 LlamaParse 包:
pip install llama-parse

LLM之RAG之LlaMAIndex:llama-index(一块轻快构建索引来查询本地文档的数据框架神器)的简介、安装、使用方法之详细攻略

LLM之RAG之LlaMAIndex:llama-index(一块轻快构建索引来查询本地文档的数据框架神器)的简介、安装、使用方法之详细攻略_llamaindex原理-CSDN博客

第三步,解析第一个 PDF 文件

现在你可以运行以下代码来解析你的第一个 PDF 文件:


现在你可以运行以下代码来解析你的第一个 PDF 文件:
import nest_asyncio
nest_asyncio.apply()
from llama_parse import LlamaParse

parser = LlamaParse(
    api_key="llx-...",  # 也可以在环境变量中设置为 LLAMA_CLOUD_API_KEY
    result_type="markdown",  # 可以选择 "markdown" 或 "text"
    num_workers=4,  # 如果传递多个文件,则在 `num_workers` 个 API 调用中拆分
    verbose=True,
    language="en",  # 可以选择定义语言,默认=en
)

# 同步解析单个文件
documents = parser.load_data("./my_file.pdf")
# 同步解析多个文件
documents = parser.load_data(["./my_file1.pdf", "./my_file2.pdf"])
# 异步解析单个文件
documents = await parser.aload_data("./my_file.pdf")
# 异步解析多个文件
documents = await parser.aload_data(["./my_file1.pdf", "./my_file2.pdf"])
与 SimpleDirectoryReader 一起使用

第四步,将解析器集成为 SimpleDirectoryReader 中的默认 PDF 加载器:

第四步,将解析器集成为 SimpleDirectoryReader 中的默认 PDF 加载器:
import nest_asyncio
nest_asyncio.apply()

from llama_parse import LlamaParse
from llama_index.core import SimpleDirectoryReader

parser = LlamaParse(
    api_key="llx-...",  # 也可以在环境变量中设置为 LLAMA_CLOUD_API_KEY
    result_type="markdown",  # 可以选择 "markdown" 或 "text"
    verbose=True,
)

file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader(
    "./data", file_extractor=file_extractor
).load_data()
SimpleDirectoryReader 的完整文档可以在 LlamaIndex 文档中找到。

llama-parse的案例应用

持续更新中……

### 部署 DeepSeek-R1-Distill-Llama-70B 模型于集群环境 #### 准备工作 为了成功在集群环境中部署 `DeepSeek-R1-Distill-Llama-70B` 模型,需先完成一系列准备工作。这包括但不限于创建合适的运行环境、安装必要的软件包以及获取所需的模型文件。 #### 创建虚拟环境并安装依赖项 建议在一个隔离的 Python 虚拟环境中操作以避免与其他项目冲突。通过以下命令可以轻松设置: ```bash python3 -m venv my_env source my_env/bin/activate # Linux/MacOS 或者对于 Windows 使用 `my_env\Scripts\activate.bat` pip install --upgrade pip setuptools wheel ``` 接着按照官方文档指引来安装 VLLM 及其所有依赖库[^2]。 #### 下载模型权重 利用 Hugging Face 提供的命令行接口 (CLI),可以直接从仓库拉取预训练好的 LLM 权重至本地存储位置: ```bash huggingface-cli login git lfs install git clone https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B cd DeepSeek-R1-Distill-Llama-70B ``` #### 启动服务端口监听 一旦上述步骤顺利完成,则可以通过指定参数调用 `vllm serve` 命令开启 HTTP API 接口用于接收外部请求。考虑到目标架构为多节点组成的计算集群,在此过程中特别需要注意调整 tensor 并行度大小以及其他性能优化选项: ```bash vllm serve \ deepseek-ai/DeepSeek-R1-Distill-Llama-70B \ --tensor-parallel-size N \ --max-model-len 32768 \ --enforce-eager ``` 这里 `N` 表示参与运算的实际 GPU 数量;其他参数保持不变即可满足大多数情况下的应用需求[^1]。 #### 分布式训练配置 针对大规模分布式训练任务而言,除了基本的服务启动外还需要额外考虑诸如数据分片策略、梯度同步机制等因素的影响。具体实现方式取决于所选用的技术栈支持平台特性。通常情况下会涉及到 PyTorch 的 DDP(Distributed Data Parallel)、Horovod 等流行方案的选择与集成[^4]。 例如采用 PyTorch 官方推荐的方式来进行跨机器间的高效协作时,可参照如下模板编写脚本: ```python import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from transformers import AutoModelForCausalLM, AutoTokenizer def main(rank, world_size): # 初始化进程组通信 dist.init_process_group('nccl', rank=rank, world_size=world_size) model_name_or_path = 'deepseek-ai/DeepSeek-R1-Distill-Llama-70B' tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(f'cuda:{rank}') ddp_model = DDP(model, device_ids=[rank]) # 继续定义后续逻辑... if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--nodes', default=1, type=int) parser.add_argument('--gpus_per_node', default=torch.cuda.device_count(), type=int) args = parser.parse_args() total_gpus = args.nodes * args.gpus_per_node torch.multiprocessing.spawn(main, args=(total_gpus,), nprocs=args.gpus_per_node, join=True) ``` 该代码片段展示了如何基于 PyTorch 实现简单的分布式推理流程,其中包含了初始化 NCCL 进程组、加载模型实例到特定设备上并将其实例化为 DDP 对象的关键环节。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值