LLMs之memory:mem0(个性化的AI记忆层)的简介、安装和使用方法、案例应用之详细攻略

LLMs之memory:mem0(个性化的AI记忆层)的简介、安装和使用方法、案例应用之详细攻略

目录

mem0的简介

1、核心功能

2、Mem0 与 RAG 有何不同?

mem0的安装和使用方法

1、安装

2、使用方法

mem0的案例应用

1、常见用例:个性化学习助手、客户支持 AI 代理、医疗助理、虚拟伴侣、生产力工具、游戏 AI


mem0的简介

2024年7月19日,Mem0 AI公司公开发布mem0,这是一款个性化 AI 的记忆层。Mem0 为大语言模型提供了一个智能、自我改进的记忆层,使得在各种应用中实现个性化的 AI 体验成为可能,从而实现跨应用程序的个性化 AI 体验。

注意:Mem0 仓库现在还包含了 Embedchain 项目。我们会继续维护和支持 Embedchain ❤️。你可以在 embedchain 目录中找到 Embedchain 的代码库。

GitHub地址GitHub - mem0ai/mem0: The memory layer for Personalized AI

文档地址https://docs.mem0.ai/overview

1、核心功能

>> 多层次记忆:用户、会话和 AI 代理记忆保留

>> 用户、会话和 AI 代理内存:跨用户会话、交互和 AI 代理保留信息,确保连续性和上下文。

>> 自适应个性化:根据用户交互和反馈不断改进个性化。

>> 开发人员友好 API:提供简单的 API,可无缝集成到各种应用程序中。

>> 跨平台一致性:确保不同平台和设备上的行为和数据一致。

>> 托管服务:提供托管解决方案,以便于部署和维护。

2、Mem0 与 RAG 有何不同?

Mem0 的大型语言模型 (LLM) 内存实现与检索增强生成 (RAG) 相比具有多项优势

>> 实体关系:Mem0可以理解和关联不同交互中的实体,而 RAG 则从静态文档中检索信息。这可以更深入地理解上下文和关系。

>> 新近度、相关性和衰减:Mem0 优先考虑最近的交互并逐渐忘记过时的信息,确保记忆保持相关性和最新性,以便做出更准确的响应。

>> 情境连续性:Mem0 在会话之间保留信息,保持对话和交互的连续性,这对于虚拟伴侣或个性化学习助手等长期参与应用程序至关重要。

>> 自适应学习:Mem0 根据用户交互和反馈提高其个性化,使得记忆更加准确,并随着时间的推移更适合个人用户。

>> 动态更新:Mem0 可以使用新信息和交互动态更新其内存,而不像 RAG 那样依赖静态数据。这允许实时调整和改进,从而增强用户体验。

这些先进的内存功能使 Mem0 成为开发人员创建个性化和情境感知 AI 应用程序的强大工具。

mem0的安装和使用方法

1、安装

pip install mem0ai

2、使用方法

基本用法(开源)

如果你希望使用托管版本且不想自己设置基础设施,请查看 Mem0 平台文档,以便在几分钟内开始使用。

import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "xxx"

# 初始化 Mem0
m = Memory()

# 从任何非结构化文本中存储记忆
result = m.add("我正在提高我的网球技能。请推荐一些在线课程。", user_id="alice", metadata={"category": "hobbies"})
print(result)
# 创建的记忆:提高她的网球技能。寻找在线建议。

# 检索记忆
all_memories = m.get_all()
memory_id = all_memories[0]["id"] # 获取 memory_id
print(all_memories)

# 搜索记忆
related_memories = m.search(query="Alice 的爱好是什么?", user_id="alice")
print(related_memories)

# 更新记忆
result = m.update(memory_id=memory_id, data="喜欢在周末打网球")
print(result)

# 获取记忆历史
history = m.history(memory_id=memory_id)
print(history)

mem0的案例应用

持续更新中……

1、常见用例个性化学习助手客户支持 AI 代理医疗助理虚拟伴侣生产力工具游戏 AI

>> 个性化学习助手:长期记忆使学习助手能够记住用户的偏好、过去的互动和进度,从而提供更加定制化、有效的学习体验。

>> 客户支持 AI 代理:通过保留以前交互的信息,客户支持机器人可以提供更准确、更具情境感知的帮助,提高客户满意度并缩短解决时间。

>> 医疗助理:长期记忆使医疗助理能够跟踪患者病史、用药时间表和治疗计划,确保个性化和一致的护理。

>> 虚拟伴侣:虚拟伴侣可以利用长期记忆,通过记住个人详细信息、偏好和过去的对话来与用户建立更深层次的关系,使互动更有意义。

>> 生产力工具:长期记忆可帮助生产力工具记住用户习惯、常用文档和任务历史记录,从而简化工作流程并提高效率。

>> 游戏 AI:在游戏中,具有长期记忆的 AI 可以通过记住玩家的选择、策略和进度并相应地调整游戏环境来创造更身临其境的体验。

### minimind LLMs 源码解读分析 #### full_sft.py 文件解析 `full_sft.py` 是一个用于实现基于 PyTorch 的分布式混合精度语言模型全参数训练框架的脚本[^1]。该文件主要关注于如何高效地利用硬件资源,在大规模数据集上进行高效的训练。 为了支持分布式训练,此模块引入了 `torch.distributed.launch` 工具来启动多进程环境,并通过配置 GPU 设备来进行并行计算。对于优化器的选择,默认采用 AdamW 来更新权重参数;同时为了加速收敛过程以及提高数值稳定性,还应用了梯度裁剪技术防止梯度过大造成不稳定现象发生。 此外,考虑到现代深度学习任务中常见的内存瓶颈问题,这里实现了自动混合精度机制 (Automatic Mixed Precision, AMP),它允许网络中的某些部分以较低位宽的数据类型运行从而节省显存空间而不影响最终性能表现。 ```python from torch.cuda.amp import GradScaler, autocast scaler = GradScaler() with autocast(): outputs = model(inputs) loss.backward() scaler.step(optimizer) scaler.update() ``` #### eval.py 文件解析 另一方面,《eval.py》则专注于构建一个可以与用户实时互动交流的人工智能系统[^2]。具体来说就是创建了一个命令行界面(Command Line Interface, CLI), 让使用者能够输入自然语言查询语句得到相应的回复结果。 在这个过程中涉及到的关键组件包括但不限于: - **Tokenizer**: 负责将原始文本转换成 token 序列以便送入 Transformer 编解码架构处理; - **Model Inference Pipeline**: 定义好推理流程之后就可以调用预训练好的 checkpoint 进行预测操作了; - **Response Generation Logic**: 根据上下文信息动态调整生成策略确保对话连贯性逻辑一致性. ```python tokenizer = AutoTokenizer.from_pretrained('pretrained_model_path') model = AutoModelForCausalLM.from_pretrained('pretrained_model_path') input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值