LLMs之Agent:Coze(字节版的GPTs/偏低代码场景)的简介、安装和使用方法、案例应用之详细攻略

LLMs之Agent:Coze(字节版的GPTs/偏低代码场景)的简介、安装和使用方法、案例应用之详细攻略

目录

Coze的简介

1、Coze 的核心功能:智能体+AI应用

2、Coze 的能力

3、架构

4、核心功能

Coze的安装和使用方法

1、安装

2、使用方法

第1步,创建智能体

T1、手动创建

T2、AI辅助创建

智能体开发页面

第2步,编写提示词

第3步,(可选)添加技能

第4步,调试智能体

第5步,发布智能体

Coze的案例应用


Coze的简介

2024年2月1日‌正式发布,Coze 是一个 AI 应用开发平台,适用于所有技能水平的用户,可以帮助用户安全、可靠、负责任地开发和部署生成式AI应用。无论是初学者还是有编程经验者,都可以使用 Coze 轻松开发和部署 AI 应用。Coze提供可视化设计和编排工具,支持无代码(no-code)或低代码(low-code)方式快速构建AI项目,利用大型语言模型(LLMs)满足个性化需求,实现商业价值。

1、Coze 的核心功能智能体+AI应用

>> AI 代理(Agent)/智能体:通过对话与用户交互的 AI 项目自动调用插件或工作流以执行任务并生成响应。典型应用包括智能客服、虚拟助手、英语导师等。
>> AI 应用(AI Application):具备完整业务逻辑和可视化用户界面的 AI 项目,适用于各种场景,如 AI 搜索、翻译工具、健康管理等。

2、Coze 的能力

>> 先进 AI 模型支持: 集成 OpenAI、Cohere、Google Gemini、Anthropic 等主流大模型,适用于不同 AI 生成场景。
>> 开箱即用的工具: 提供 UI 构建器、语音交互、快捷指令等,提高开发效率。
>> 高精度与自定义数据支持: 可利用自有数据增强 AI 生成效果,并集成插件访问外部实时数据。
>> 易用的编排与调试: 提供可视化交互界面,简化开发、追踪与调试流程。
>> 多渠道部署: 支持 AI 应用发布到网站、移动端、社交平台,并可作为 API 端点扩展使用。
>> 探索最新 AI 服务: 在 Coze 商店中浏览并尝试热门 AI 服务和模型。

3、架构

Coze 提供端到端的 AI 开发解决方案,涵盖开发、评估、监控和发布等全流程,支持 AI 代理(Agent)和 AI 应用(AI App),并提供多样化的发布选项。Workspace(工作区)是最高级别的资源组织单位,不同工作区间的数据相互隔离,多个 AI 应用和代理可以共享同一工作区的资源库。

工作区

工作区(Workspace): 资源和数据的基本组织单元,不同工作区间互不干扰。

项目

项目(Project): 包含 AI 代理和 AI 应用,可在项目中创建特定资源,或共享工作区的资源库。

AI 代理

AI 代理(Agent):具有自动化任务执行、决策和学习能力的 AI 项目。可调用 LLMs、知识库、插件等执行用户指令。

AI 应用

AI 应用(AI App):使用 LLMs 进行数据分析和决策,支持复杂任务处理。

资源库

资源库(Resource Library):

工作区资源库:为该工作区内所有 AI 代理和 AI 应用提供共享资源

项目资源库:仅限于该项目使用,默认不可共享,但可以手动转移至工作区资源库。

4、核心功能

>> 编排和开发:Coze提供最新的大型语言模型选择提示工程、编排模式(单代理和多代理)、任务执行能力(插件/工作流/触发器)等功能。
>> 知识管理:利用检索增强生成(RAG)功能,通过上传数据到知识库,增强LLMs的响应。
>> 记忆系统:Coze提供变量、数据库、长期记忆、文件管理等功能,以存储、检索和利用信息,提高模型的响应准确性和相关性。
>> 聊天体验:Coze提供丰富的功能,用于增强AI聊天机器人的体验,如设置欢迎文本、建议问题、选择声音等。
>> 部署和集成:Coze支持将AI应用部署到多个渠道,如Discord、Telegram、Facebook Messenger等,并提供API或Web SDK集成能力。
>> 团队协作与权限:工作区(Workspace)作为团队协作单位,支持资源共享与权限管理。支持 API 级别权限配置,确保数据安全性。

Coze的安装和使用方法

1、安装

在线使用地址扣子

2、使用方法

在Coze平台上快速构建一个AI智能体,以一个“赞美机器人”为例,循序渐进地在Coze平台上创建、配置和发布一个AI智能体的完整流程,并详细介绍了每个步骤的关键操作和注意事项,旨在帮助用户快速上手Coze平台并构建自己的AI应用。提示词非常重要,通过添加技能来扩展AI能力,让用户能够轻松地将AI智能体应用于各种实际场景。

第1步,创建智能体

在Coze平台上创建新的AI智能体。用户可以通过两种方式创建:

T1、手动创建

用户需要输入智能体的名称和功能描述,系统会自动生成头像。

T2、AI辅助创建

用户可以使用自然语言描述需求,Coze平台会根据描述自动创建一个智能体。

智能体开发页面

创建完成后,用户会进入智能体开发页面,该页面包含三个主要区域:
>> Persona & Prompt (角色和提示词):用于定义智能体的角色、语言风格和行为边界。
>> Skills (技能):用于配置智能体的扩展能力,例如接入外部插件。
>> Preview & Debug (预览和调试):用于实时调试智能体。

第2步,编写提示词

这是配置智能体的关键步骤。提示词(Persona & Prompt)定义了智能体的基本人格和行为准则,它会持续影响智能体在所有对话中的回应。建议用户明确模型的角色、设计回复的语言风格,并限制模型的回复范围,以使聊天更符合用户预期。
本案例以“赞美机器人”为例,给出了详细的提示词示例,包括角色设定、不同类型的赞美技能(外貌、成就、性格)以及行为约束(始终使用积极的语言,避免负面评价)。 用户还可以点击“Optimize”按钮,让大型语言模型优化提示词结构。

第3步,(可选)添加技能

如果模型本身的能力足以满足智能体的功能需求,则只需编写提示词即可。但如果需要扩展智能体的功能,例如处理多模态内容(图片、PPT等)或访问特定领域的专业知识,则需要添加技能。以“赞美机器人”为例,通过添加Bing搜索插件来增强其信息检索能力。 这部分强调了模型能力的局限性以及扩展其能力的必要性。

第4步,调试智能体

在配置完成后,用户可以在“Preview & Debug”区域测试智能体是否符合预期。 这部分强调了测试的重要性,确保智能体能够正常工作

第5步,发布智能体

调试完成后,用户可以将智能体发布到不同的渠道,例如Lark、微信、抖音、Cici等。用户可以根据自身需求和业务场景选择合适的渠道。可知智能体的应用场景和发布方式的多样性。

Coze的案例应用

持续更新中……

### minimind LLMs 源码解读分析 #### full_sft.py 文件解析 `full_sft.py` 是一个用于实现基于 PyTorch 的分布式混合精度语言模型全参数训练框架的脚本[^1]。该文件主要关注于如何高效地利用硬件资源,在大规模数据集上进行高效的训练。 为了支持分布式训练,此模块引入了 `torch.distributed.launch` 工具来启动多进程环境,并通过配置 GPU 设备来进行并行计算。对于优化器的选择,默认采用 AdamW 来更新权重参数;同时为了加速收敛过程以及提高数值稳定性,还应用了梯度裁剪技术防止梯度过大造成不稳定现象发生。 此外,考虑到现代深度学习任务中常见的内存瓶颈问题,这里实现了自动混合精度机制 (Automatic Mixed Precision, AMP),它允许网络中的某些部分以较低位宽的数据类型运行从而节省显存空间而不影响最终性能表现。 ```python from torch.cuda.amp import GradScaler, autocast scaler = GradScaler() with autocast(): outputs = model(inputs) loss.backward() scaler.step(optimizer) scaler.update() ``` #### eval.py 文件解析 另一方面,《eval.py》则专注于构建一个可以与用户实时互动交流的人工智能系统[^2]。具体来说就是创建了一个命令行界面(Command Line Interface, CLI), 让使用者能够输入自然语言查询语句得到相应的回复结果。 在这个过程中涉及到的关键组件包括但不限于: - **Tokenizer**: 负责将原始文本转换成 token 序列以便送入 Transformer 编解码架构处理; - **Model Inference Pipeline**: 定义好推理流程之后就可以调用预训练好的 checkpoint 进行预测操作了; - **Response Generation Logic**: 根据上下文信息动态调整生成策略确保对话连贯性逻辑一致性. ```python tokenizer = AutoTokenizer.from_pretrained('pretrained_model_path') model = AutoModelForCausalLM.from_pretrained('pretrained_model_path') input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值