Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

目录

相关文章

Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

Py之seaborn:数据可视化seaborn库的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的组合图/矩阵图可视化代码实现集合之详细攻略

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图实现的十二个函数源代码详解之最强攻略(建议收藏)

Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图的函数源代码详解之最强攻略(建议收藏)

Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot/JointGrid/pairplot/PairGrid/FacetGrid密度图等的函数源代码详解之最强攻略

seaborn库的简介

seaborn库的安装和使用方法

seaborn库的应用案例

1、案例应用


相关文章

Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

https://yunyaniu.blog.csdn.net/article/details/80217906

Py之seaborn:数据可视化seaborn库的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的组合图/矩阵图可视化代码实现集合之详细攻略

https://yunyaniu.blog.csdn.net/article/details/114042795

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图实现的十二个函数源代码详解之最强攻略(建议收藏)

https://yunyaniu.blog.csdn.net/article/details/113444075

Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图的函数源代码详解之最强攻略(建议收藏)

https://yunyaniu.blog.csdn.net/article/details/114041180

Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot/JointGrid/pairplot/PairGrid/FacetGrid密度图等的函数源代码详解之最强攻略

https://yunyaniu.blog.csdn.net/article/details/114041840

seaborn库的简介

    Seabn是一个在Python中制作有吸引力和丰富信息的统计图形的库。它构建在MatPultLB的顶部,与PyDATA栈紧密集成,包括对SIMPY和BANDA数据结构的支持以及SISPY和STATSMODEL的统计例程。

    Seaborn 其实是在matplotlib的基础上进行了更高级的 API 封装,从而使得作图更加容易 在大多数情况下使用seaborn就能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充。Seabn是基于MatPultLB的Python可视化库。它为绘制有吸引力的统计图形提供了一个高级接口。

Official seaborn tutorial
Seaborn 官方介绍
seaborn: statistical data visualization

seaborn提供的一些特点是
在默认MatMattLIB美学中改进的几个内置主题:

  • 1、选择颜色调色板的工具来绘制数据中的模式
  • 2、用于可视化单变量和二变量分布或用于在数据子集之间进行比较的功能
  • 3、拟合和可视化不同类型独立变量和因变量的线性回归模型的工具
  • 4、可视化数据矩阵并使用聚类算法发现这些矩阵中的结构的函数
  • 5、一种灵活估计统计时间序列数据的函数及其估计的不确定性表示
  • 6、构造抽象网格的高级抽象,让您轻松地构建复杂的可视化

seaborn库的安装和使用方法

pip install seaborn

seaborn库的应用案例

1、案例应用

import numpy as np  
import seaborn as sns  
import matplotlib.pyplot as plt  

sns.set( palette="muted", color_codes=True)  

rs = np.random.RandomState(10)  
d = rs.normal(size=100)  
f, axes = plt.subplots(2, 2, figsize=(7, 7), sharex=True)  

plt.title('seaborn: statistical data visualization')
sns.distplot(d, kde=False, color="b", ax=axes[0, 0])  
sns.distplot(d, hist=False, rug=True, color="r", ax=axes[0, 1])  
sns.distplot(d, hist=False, color="g", kde_kws={"shade": True}, ax=axes[1, 0])  
sns.distplot(d, color="m", ax=axes[1, 1])  

plt.show()  

参考官网:
seaborn 0.8.1
好文推荐
Python数据可视化-seaborn 
 

Seaborn是一个基于matplotlib的数据可视化,它提供了一些高级的绘图功能。Seaborn还内置了一些数据集,可以用于练习和演示。 下面是一个简单的Seaborn教程,帮助你入门: ### 安装Seaborn安装Seaborn,你可以使用pip命令: ``` pip install seaborn ``` ### 导入Seaborn使用Seaborn之前,你需要导入它。通常,它被导入为sns: ```python import seaborn as sns ``` ### 加载内置数据集 Seaborn有一些内置的数据集,可以用于练习和演示。你可以使用以下命令加载其中一个数据集: ```python tips_data = sns.load_dataset("tips") ``` ### 绘制散点图 Seaborn的散点图功能非常强大。你可以使用以下命令绘制一个简单的散点图: ```python sns.scatterplot(x="total_bill", y="tip", data=tips_data) ``` ### 绘制直方图 Seaborn的直方图功能也非常强大。你可以使用以下命令绘制一个简单的直方图: ```python sns.histplot(x="total_bill", data=tips_data) ``` ### 绘制箱线图 Seaborn的箱线图功能可以用于显示数据的分布情况。你可以使用以下命令绘制一个简单的箱线图: ```python sns.boxplot(x="day", y="total_bill", data=tips_data) ``` ### 绘制热力图 Seaborn的热力图功能可以用于显示数据的相关性。你可以使用以下命令绘制一个简单的热力图: ```python corr = tips_data.corr() sns.heatmap(corr, cmap="coolwarm") ``` 这只是Seaborn的一小部分功能。它还有很多其他的绘图选项,如线性回归图、分面图等。你可以查看Seaborn的官方文档来了解更多信息。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值