EL之GB(GBC):利用GB对二分类问题进行建模并评估

本文对比了纯GB算法与以RF为基学习器的GB算法在二分类问题上的表现,详细记录了实验设置,包括参数选择如n_estimators=2000, max_depth=3, learning_rate=0.007等,并通过AUC评估了两种模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EL之GB(GBC):利用GB对二分类问题进行建模并评估

 

目录

输出结果

T1、纯GB算法

T2、以RF为基学习器的GB算法

设计思路

核心代码


 

 

 

 

输出结果

T1、纯GB算法

T2、以RF为基学习器的GB算法

 

 

 

 

设计思路

 

核心代码

# nEst = 2000
# depth = 3
# learnRate = 0.007
# maxFeatures = None


nEst = 2000
depth = 3
learnRate = 0.007
maxFeatures = 20

rockVMinesGBMModel = ensemble.GradientBoostingClassifier(n_estimators=nEst, max_depth=depth,
                                                         learning_rate=learnRate,
                                                         max_features=maxFeatures)

rockVMinesGBMModel.fit(xTrain, yTrain)

auc = []
aucBest = 0.0
predictions = rockVMinesGBMModel.staged_decision_function(xTest)
for p in predictions:
    aucCalc = roc_auc_score(yTest, p)
    auc.append(aucCalc)

    if aucCalc > aucBest:
        aucBest = aucCalc
        pBest = p

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值