移动机器人路径规划综述

本文综述了移动机器人的路径规划,包括全局与局部路径规划算法,如A*、Dijkstra、RRT系列,以及启发式和人工智能算法,如遗传算法、粒子群优化等。旨在清晰阐述当前研究现状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

移动机器人路径规划综述

传播知识是一项伟大的使命。

路径规划(Path Planning)是移动机器人最重要的任务之一,担负着移动机器人改变自身位置的重大使命。我对移动机器人的路径规划充满兴趣,并一直希望能够对这一领域有一个全面而深入地理解。在了解了一些路径规划算法之后,找了几篇关于路径规划方面的综述性文章,做了一些笔记,整理在此,大家相互学习。
目前对路径规划算法的分类标准比较多样,但是大致上可以分为以下几类:

依据信息的多寡

  • 全局路径规划算法:从整体环境出发,依据整幅地图的全部信息(比如障碍物的形状、位置、是否运动等信息),规划出一条从起点到目标位置安全无碰撞路径。比如A*Dijkstra算法、RRT系列算法等。
  • 局部路径规划算法:仅仅依据机器人周边的环境信息来进行路径规划,信息不够全面,但是对动态的障碍物有很好的表现,多用于避障。比如VFH系列算法。

环境动态与否

  • 静态路径规划算法:该类算法假设环境是静态的,规划出的路径对环境中运动的障碍物应对能力较差。所有算法都可以当做静态路径规划算法。
  • 动态路径规划算法:该类算法考虑到了环境中运动的障碍物,比如人活着其他机器人,应对不虞之境的能力比较好。比如势场法

方法思路

  • 经典路径规划算法:顾名思义就是那些传统的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值