移动机器人路径规划综述
传播知识是一项伟大的使命。
路径规划(Path Planning)是移动机器人最重要的任务之一,担负着移动机器人改变自身位置的重大使命。我对移动机器人的路径规划充满兴趣,并一直希望能够对这一领域有一个全面而深入地理解。在了解了一些路径规划算法之后,找了几篇关于路径规划方面的综述性文章,做了一些笔记,整理在此,大家相互学习。
目前对路径规划算法的分类标准比较多样,但是大致上可以分为以下几类:
依据信息的多寡
- 全局路径规划算法:从整体环境出发,依据整幅地图的全部信息(比如障碍物的形状、位置、是否运动等信息),规划出一条从起点到目标位置安全无碰撞路径。比如A*、Dijkstra算法、RRT系列算法等。
- 局部路径规划算法:仅仅依据机器人周边的环境信息来进行路径规划,信息不够全面,但是对动态的障碍物有很好的表现,多用于避障。比如VFH系列算法。
环境动态与否
- 静态路径规划算法:该类算法假设环境是静态的,规划出的路径对环境中运动的障碍物应对能力较差。所有算法都可以当做静态路径规划算法。
- 动态路径规划算法:该类算法考虑到了环境中运动的障碍物,比如人活着其他机器人,应对不虞之境的能力比较好。比如势场法。
方法思路
- 经典路径规划算法:顾名思义就是那些传统的