能控能观判断

能控能观判断

1.能控判断

1).约旦标准型下判别

①T^{-1}AT为对角线,且特征值互异,则T^{-1}B不存在全零行时系统能控;

若有相同特征值,则在满足上述要求的前提下,各特征值对应的T^{-1}B的行元素线性无关时系统能控。

②T^{-1}AT中有约旦块,且每个约旦块特征值互异,则T^{-1}B中对应各约旦块的最后一行为非全零行时系统能控;

若存在特征值相同的约旦块,则在满足上述要求的前提下,特征值相同的各约旦块对应的T^{-1}B的最后一行线性无关时系统能控。

2).能控阵判别

能控阵M =[B,AB, ……,A^{n-1}B],若rank M=n,则系统能控。

能观判别

1).约旦型下判别

①T^{-1}AT为对角线,且特征值互异,则CT不存在全零行时系统能观;

若有相同特征值,则在满足上述要求的前提下,各特征值对应的CT的列元素线性无关时系统能观。

②T^{-1}AT中有约旦块,且每个约旦块特征值互异,则CT中对应各约旦块的开头一列为非全零列时系统能观;

若存在特征值相同的约旦块,则在满足上述要求的前提下,特征值相同的各约旦块对应的CT的开头一列线性无关时系统能观。

2).能观阵判别

能观阵N =[C,CA,……,CA^{n-1}],若rank N=n ,则系统能观。

在Python中,判断系统是否能和能通常涉及到动态系统的理论,特别是对于线性系统。能性和能性是制理论中的两个基本概念: 1. **能性** (Controllability) 指的是系统通过输入信号可以达到系统状态空间的所有点,即给定任意初始状态和最终状态,是否存在一个可行的输入信号可以使系统从初始状态变化到最终状态。 2. **能性** (Observability) 则表示系统内部的状态变化是否可以通过外部可测量完全确定,也就是说,是否存在一组测器能够获取到系统的全部信息。 为了评估这些性质,通常会计算系统的雅各比矩阵和卡尔曼增益矩阵。对于线性连续系统,可以使用`linalg.eigvals`函数来检查系统矩阵、输入矩阵和输出矩阵的特征值,如果它们都是实数且都没有零特征值,则系统被认为是能的和能的。 Python库如`Control`模块提供了工具来处理这些问题,例如`control.obsv()`用于计算察矩阵的秩来检验能性,`control.ctrb()`用于计算制矩阵的秩来检验能性。 如果你想直接测试,可以尝试导入`control`库,并使用如下的简略示例: ```python from control import * sys = ... # 定义你的系统模型 A, B, C, D = sys.A, sys.B, sys.C, sys.D # 能性检验 if np.linalg.matrix_rank(ctrb(A, B)) == n: controllable = True else: controllable = False # 能性检验 if np.linalg.matrix_rank(obsv(C, A.T)) == n: observable = True else: observable = False ``` 这里的`n`是系统的阶数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值