目录
1、Conditional ternary operator
Verilog has a ternary conditional operator ( ? : ) much like C:(condition ? if_true : if_false)
module top_module (
input [7:0] a, b, c, d,
output [7:0] min);//
wire [7:0] m1;
wire [7:0] m2;
assign m1 = (a < b) ? a : b;
assign m2 = (c < d) ? c : d;
assign min = (m1 < m2) ? m1 : m2;
endmodule
2、Reduction operators
The reduction operators can do AND, OR, and XOR of the bits of a vector, producing one bit of output:
& a[3:0] // AND: a[3]&a[2]&a[1]&a[0]. Equivalent to (a[3:0] == 4’hf)
| b[3:0] // OR: b[3]|b[2]|b[1]|b[0]. Equivalent to (b[3:0] != 4’h0)
^ c[2:0] // XOR: c[2]c[1]c[0]
These are unary operators that have only one operand (similar to the NOT operators ! and ~). You can also invert the outputs of these to create NAND, NOR, and XNOR gates, e.g., (~& d[7:0]).
module top_module (
input [7:0] in,
output parity);
assign parity = ^in;
endmodule
3、Reduction: Even wider gates
Build a combinational circuit with 100 inputs, in[99:0].
There are 3 outputs:
out_and: output of a 100-input AND gate.
out_or: output of a 100-input OR gate.
out_xor: output of a 100-input XOR gate.
module top_module(
input [99:0] in,
output out_and,
output out_or,
output out_xor
);
assign out_and = & in;
assign out_or = | in;
assign out_xor = ^ in;
endmodule
4、Combinational for-loop: Vector reversal 2
Given a 100-bit input vector [99:0], reverse its bit ordering.
module top_module(
input [99:0] in,
output [99:0] out
);
integer i;
always@(*) begin
for(i=0;i<100;i=i+1)
out[i] = in[99-i];
end
endmodule
5、Combinational for-loop: 255-bit population count
A “population count” circuit counts the number of '1’s in an input vector. Build a population count circuit for a 255-bit input vector.
module top_module(
input [254:0] in,
output [7:0] out );
integer i;
always@(*) begin
out = 0;
for(i=0;i<255;i=i+1)
out = out + in[i];
end
endmodule
6、Generate for-loop: 100-bit binary adder 2
Create a 100-bit binary ripple-carry adder by instantiating 100 full adders. The adder adds two 100-bit numbers and a carry-in to produce a 100-bit sum and carry out. To encourage you to actually instantiate full adders, also output the carry-out from each full adder in the ripple-carry adder. cout[99] is the final carry-out from the last full adder, and is the carry-out you usually see.
module top_module(
input [99:0] a, b,
input cin,
output [99:0] cout,
output [99:0] sum );
assign cout[0] = a[0]&b[0] | a[0]&cin | b[0]&cin;
assign sum[0] = a[0]^b[0]^cin;
integer i;
always@(*) begin
for(i=1;i<100;i=i+1) begin
cout[i] = a[i]&b[i] | a[i]&cout[i-1] | b[i]&cout[i-1];
sum[i] = a[i]^b[i]^cout[i-1];
end
end
endmodule
7、Generate for-loop: 100-digit BCD adder
You are provided with a BCD one-digit adder named bcd_fadd that adds two BCD digits and carry-in, and produces a sum and carry-out.
module bcd_fadd {
input [3:0] a,
input [3:0] b,
input cin,
output cout,
output [3:0] sum );
Instantiate 100 copies of bcd_fadd to create a 100-digit BCD ripple-carry adder. Your adder should add two 100-digit BCD numbers (packed into 400-bit vectors) and a carry-in to produce a 100-digit sum and carry out.
module top_module(
input [399:0] a, b,
input cin,
output cout,
output [399:0] sum );
wire [99:0] cout_s;
assign cout = cout_s[99];
bcd_fadd add1(
.a (a[3:0]),
.b (b[3:0]),
.cin (cin),
.cout (cout_s[0]),
.sum (sum[3:0])
);
genvar i;
generate for(i=1;i<100;i=i+1)
begin:loop
bcd_fadd add2(
.a (a[4*i+3:4*i]),
.b (b[4*i+3:4*i]),
.cin (cout_s[i-1]),
.cout (cout_s[i]),
.sum (sum[4*i+3:4*i])
);
end
endgenerate
endmodule