YOLOv11创新升级1:引入SPDConv提升检测性能

YOLOv11创新升级1:引入SPDConv提升检测性能



前言

随着深度学习技术的发展,YOLO系列模型在目标检测任务中不断演进。在最新的YOLOv11模型中,引入SPDConv(Sparse Depthwise Convolution),旨在提升检测精度和速度。SPDConv作为一种高效的卷积操作,通过减少卷积层的参数数量和计算复杂度,极大地优化了模型性能。与传统卷积操作相比,SPDConv仅在必要区域进行计算,显著提高了运算效率。这种稀疏计算方式使得YOLOv11在保持高精度的同时,显著降低了推理时间,适用于实时检测场景。结合SPDConv的YOLOv11不仅提升了对小目标的检测能力,还在复杂背景下表现出色,展现了在工业缺陷检测和智能监控等应用中的强大实用性。


在这里插入图片描述

1. SPD-Conv 的关键概念

1.1 替代步长卷积与池化层

SPD-Conv旨在替代YOLOv11中的传统步长卷积和池化层。这些层在处理小物体时往往会导致细粒度信息丢失,影响模型的检测能力。

1.2 空间到深度(SPD)层

SPD层的设计目的是将输入图像的空间维度转换为深度维度。这一过程增加了特征图的深度,同时尽可能保留空间信息,从而避免传统方法中的信息损失。

1.3 非步长卷积层

在SPD层之后,YOLOv11应用非步长卷积(步长为1)进行特征提取。这种方式在不减少特征图空间尺寸的情况下,有效保留了细节信息,尤其适合于低分辨率图像和小物体的检测。

1.4 SPD层的应用

  • 初始特征图尺寸为(32x32),通过SPD层处理后,空间分辨率可能降低到(16x16),而通道数增加,确保信息的完整性。

1.5 非步长卷积层的应用

  • 处理后的特征图尺寸为(16x16),通道数从64增加到256。通过非步长卷积层,YOLOv11能够有效提取特征,而不损失空间信息,提升了对小物体的检测能力。

2. 核心代码

import torch
import torch.nn as nn
 
__all__ = ['SPDConv']
 
class SPDConv(nn.Module):
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension
 
    def forward(self, x):
         return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)

2.1在ultralytics/nn/modules/下新建SPDConv.py,并将代码写入。

在这里插入图片描述

2.2 在ultralytics\nn\modules_init_.py中加入

from .
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值