手把手教你玩转YOLOv12目标检测:从环境配置、模型训练、验证、推理的全流程指南

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

在这里插入图片描述

引言

本文将详细介绍如何使用YOLOv12进行目标检测模型的训练与推理,包含完整代码示例和实战技巧,建议收藏后阅读!

论文:https://arxiv.org/abs/2502.12524
代码:https://github.com/sunsmarterjie/yolov12


运行环境配置

#创建虚拟环境
conda create -n yolov12 python=3.11  
#激活环境
conda activate yolov12 
# 安装核心依赖
pip install ultralytics

默认使用的cpu,如果需要使用GPU进行训练,需要安装GPU版本的Pytorch, 需要去Pytorch官网:https://pytorch.org/get-started/locally/,选择适合自己GPU的Pytorch进行安装。

首先卸载原环境中的Torch与TorchVision,然后再安装GPU版本。

pip uninstall torch
pip uninstall torchvision

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

在这里插入图片描述

环境验证

import torch
print(f"PyTorch版本: {torch.__version__}")
print(f"CUDA可用: {torch.cuda.is_available()}")
print(f"GPU数量: {torch.cuda.device_count()}")

在这里插入图片描述

数据集准备

  1. 免费标注工具推荐

    • LabelImg(本地标注)
    • LabelMe(本地标注)
  2. 安装标注工具

    pip install labelImg
    labelImg  # 启动图形界面
    
  3. 标注规范

    • 标注框紧贴目标边缘
    • 遮挡目标需标注可见部分
    • 小目标(<32x32)使用特殊标记
  4. 标注格式转换脚本(Pascal VOC转YOLO格式)

import xml.etree.ElementTree as ET
import os

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

classes = ["person", "car", "dog"]  # 自定义类别

for xml_file in os.listdir("Annotations"):
    tree = ET.parse(f"Annotations/{xml_file}")
    root = tree.getroot()
    
    with open(f"labels/{xml_file[:-4]}.txt", 'w') as f:
        for obj in root.iter('object'):
            cls = obj.find('name').text
            if cls not in classes:
                continue
            cls_id = classes.index(cls)
            bbox = obj.find('bndbox')
            pts = ['xmin', 'ymin', 'xmax', 'ymax']
            bndbox = []
            for pt in pts:
                cur_pt = int(bbox.find(pt).text)
                bndbox.append(cur_pt)
            size = root.find('size')
            w = int(size.find('width').text)
            h = int(size.find('height').text)
            bb = convert((w,h), bndbox)
            f.write(f"{cls_id} {' '.join([str(a) for a in bb])}\n")
  1. 数据集目录结构规范
dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/
  1. 创建数据集配置文件dataset.yaml):
path: ./dataset
train: images/train
val: images/val
names:
  0: person
  1: car
  2: traffic_light

模型训练全流程

步骤1:选择预训练模型

模型尺寸 (像素)mAPval 50-95速度 T4 TensorRT (ms)params (M)FLOPs (B)比较 (mAP/Speed)
YOLO12n64040.61.642.66.5+2.1%/-9%(与 YOLOv10n 相比)
YOLO12s64048.02.619.321.4+0.1%/+42%(与 RT-DETRv2 相比)
YOLO12m64052.54.8620.267.5+1.0%/-3%(与 YOLO11m 相比)
YOLO12l64053.76.7726.488.9+0.4%/-8%(与 YOLO11l 相比)
YOLO12x64055.211.7959.1199.0+0.6%/-4%(与 YOLO11x 相比)

根据需要选择自己想训练的模型大小,一般来说模型越大检测效果越好【但不绝对】。

  • 官方提供的预训练权重:
    • yolov12n.pt(纳米级)
    • yolov12s.pt(轻量级)
    • yolov12m.pt(均衡版)
    • yolov12l.pt(大型版本)
    • yolov12x.pt(超大型版本)

步骤2:模型训练

from ultralytics import YOLO

model = YOLO('yolov12s.pt')  # 加载预训练模型

results = model.train(
    data='dataset.yaml',
    epochs=300,
    imgsz=640,
    batch=16,
    device=0,  # 使用GPU 0
    optimizer='SGD',
    lr0=0.001
)

关键训练参数解析

以下是一些常用的模型训练参数和说明:

参数名默认值说明
modelNone指定用于训练的模型文件。接受指向 .pt 预训练模型或 .yaml 配置文件。对于定义模型结构或初始化权重至关重要。
dataNone数据集配置文件的路径(例如 coco8.yaml).该文件包含特定于数据集的参数,包括训练数据和验证数据的路径、类名和类数。
epochs100训练总轮数。每个epoch代表对整个数据集进行一次完整的训练。调整该值会影响训练时间和模型性能。
patience100在验证指标没有改善的情况下,提前停止训练所需的epoch数。当性能趋于平稳时停止训练,有助于防止过度拟合。
batch16批量大小,有三种模式:设置为整数(例如,’ Batch =16 ‘), 60% GPU内存利用率的自动模式(’ Batch =-1 ‘),或指定利用率分数的自动模式(’ Batch =0.70 ')。
imgsz640用于训练的目标图像尺寸。所有图像在输入模型前都会被调整到这一尺寸。影响模型精度和计算复杂度。
deviceNone指定用于训练的计算设备:单个 GPU (device=0)、多个 GPU (device=0,1)、CPU (device=cpu),或苹果芯片的 MPS (device=mps).
workers8加载数据的工作线程数(每 RANK 多 GPU 训练)。影响数据预处理和输入模型的速度,尤其适用于多 GPU 设置。
nameNone训练运行的名称。用于在项目文件夹内创建一个子目录,用于存储训练日志和输出结果。
pretrainedTrue决定是否从预处理模型开始训练。可以是布尔值,也可以是加载权重的特定模型的字符串路径。提高训练效率和模型性能。
optimizer'auto'为训练模型选择优化器。选项包括 SGD, Adam, AdamW, NAdam, RAdam, RMSProp 等,或 auto 用于根据模型配置进行自动选择。影响收敛速度和稳定性
lr00.01初始学习率(即 SGD=1E-2, Adam=1E-3) .调整这个值对优化过程至关重要,会影响模型权重的更新速度。
lrf0.01最终学习率占初始学习率的百分比 = (lr0 * lrf),与调度程序结合使用,随着时间的推移调整学习率。

步骤3:模型验证

from ultralytics import YOLO

model = YOLO('yolov12n.pt')
model.val(data='dataset.yaml', save_json=True)

步骤4:模型推理预测

1. 图像检测

model = YOLO('best.pt')  # 加载训练好的模型
results = model('test.jpg', 
               conf=0.5,  # 置信度阈值
               save=True, 
               show_labels=True)

2. 视频流处理

results = model.predict(
    source='input.mp4',
    stream=True,  # 启用流式处理
    save_txt=True  # 保存检测结果
)

3. 实时摄像头检测

model.predict(
    source=0,  # 默认摄像头
    show=True,  # 实时显示
    classes=[0,2]  # 只检测人和交通灯
)

模型导出

from ultralytics import YOLO

model = YOLO('yolo12n.pt')
model.export(format="engine", half=True)  # or format="onnx"

常用导出格式:

格式format模型是否支持参数
PyTorch-yolo12n.pt-
ONNXonnxyolo12n.onnximgsz, half, dynamic, simplify, opset, nms, batch
OpenVINOopenvinoyolo12n_openvino_model/imgsz, half, dynamic, int8, nms, batch, data
TensorRTengineyolo12n.engineimgsz, half, dynamic, simplify, workspace, int8, nms, batch, data

性能优化技巧

  1. TensorRT加速:转换模型到.engine格式
  2. 量化压缩:使用FP16精度减少模型体积
  3. 多尺度推理:增强小目标检测能力
model.predict(..., imgsz=[640, 1280])  # 多尺度测试

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

### 关于YOLOv12验证资源的信息 目前官方发布的YOLO系列版本最高至YOLOv8[^1]。对于提到的YOLOv12,尚未有公开资料表明其存在或发布情况。因此关于YOLOv12的具体验证资源信息无法提供确切的内容。 如果考虑YOLO系列模型的一般验证流程,则可以参考现有YOLO版本的做法。通常情况下,YOLO模型验证会依赖特定数据集来评估模型性能。这些数据集可能包括但不限于COCO、PASCAL VOC等标准测试集合。为了确保模型的有效性鲁棒性,在验证阶段还会关注诸如mAP(mean Average Precision)、召回率等指标的表现。 针对YOLO架构中的组件设计特点,如C3层结构中涉及的不同路径处理方式以及残差连接的应用,有助于理解如何构建有效的训练验证策略[^3]。然而具体到假设存在的YOLOv12版本,除非官方文档或其他权威渠道公布相关信息,否则难以给出针对性建议。 #### 示例代码片段用于展示一般性的YOLO模型验证过程: ```python from yolovx import YOLOModel # 假设这是某个YOLO变体库 import torch from torchvision.datasets import CocoDetection from pycocotools.coco import COCO from sklearn.metrics import average_precision_score def validate_model(model_path, dataset_root, annotation_file): device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YOLOModel().to(device) checkpoint = torch.load(model_path,map_location=device) model.load_state_dict(checkpoint['model']) model.eval() coco_val = CocoDetection(root=dataset_root, annFile=annotation_file) predictions = [] ground_truths = [] with torch.no_grad(): for img, target in coco_val: pred = model(img.unsqueeze(0).to(device)) predictions.append(pred.cpu()) ground_truths.extend(target["labels"].tolist()) ap_scores = {} unique_classes = set(ground_truths) for cls_id in unique_classes: y_true_cls = [int(x==cls_id) for x in ground_truths] scores_for_class = [pred[0][y_true_cls.index(cls_id)] for i,pred in enumerate(predictions)] try: ap_scores[f'class_{cls_id}'] = average_precision_score(y_true_cls,scores_for_class) except ValueError as e: print(f"Error calculating AP score for class {cls_id}: ",e) mean_ap = sum(ap_scores.values())/len(unique_classes) return {'per_class_AP':ap_scores,'mAP':mean_ap} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值