一、本文介绍
本文记录的是基于Mobile MQA模块的RT-DETR目标检测改进方法研究。MobileNetv4中的Mobile MQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。
专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
文章目录
二、Mobile MQA注意力原理
在论文《MobileNetV4 - Universal Models for the Mobile Ecosystem》中,提出了Mobile MQA。
一、原理
- 基于MQA改进并结合不对称空间下采样:
MQA(Multi-Query Attention)简化了传统的多头注意力机制,通过共享keys和values来减少内存访问需求。在移动混合模型中,当批量大小较小时,这种方式能有效提高运算强度。- 借鉴
MQA中对queries、keys和values的不对称计算方式,Mobile MQA引入了空间缩减注意力(SRA),对keys和values进行下采样,同时保持高分辨率的queries。这是因为在混合模型中,早期层的空间混合卷积滤波器使得空间上相邻的标记具有相关性。 Mobile MQA的计算公式为:
M o b i l e _ M Q A ( X )
订阅专栏 解锁全文
1108

被折叠的 条评论
为什么被折叠?



