YOLOv11改进策略【Head】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进检测头, 优化模型(独家改进)

一、本文介绍

本文记录的是利用DynamicConv优化YOLOv11的目标检测网络模型。 在大规模训练中,模型的参数量越多,FLOPs也越高,但在一些对计算资源有限制的场景下,需要低FLOPs的模型同时又希望模型能从大规模预训练中受益传统的方法很难在增加参数的同时保持低FLOPs,因此Dynamic convolution模块应运而生。本文详细介绍了Dynamic convolution模块的运行原理,并将其加入到检测头中进行二次创新。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### 改进YOLOv7中的动态头部(DYHEAD)网络结构及性能优化 #### 动态头部(DYHEAD)概述 DyHead 是一种用于目标检测的强大检测头,通过引入动态卷积和自适应特征聚合机制,在处理多尺度目标方面表现出色。对于 YOLOv7 中的 DyHead 组件改进,可以从以下几个方面入手: #### 卷积层优化 为了提升 DyHead 的效率和效果,可以采用更先进的卷积操作方式。例如,使用深度可分离卷积代替标准卷积,这不仅能降低计算复杂度,还能保持甚至提高模型的表现[^1]。 ```python import torch.nn as nn class DepthwiseSeparableConv(nn.Module): def __init__(in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(DepthwiseSeparableConv, self).__init__() self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, groups=in_channels, padding=padding) self.pointwise = nn.Conv2d(in_channels, out_channels, 1) def forward(x): x = self.depthwise(x) x = self.pointwise(x) return x ``` #### 引入注意力机制 在原有基础上加入空间注意力模块(Spatial Attention Module),能够有效增强对重要区域的关注程度,从而改善小物体检测精度。此外,还可以考虑集成通道注意力(Channel-wise Attention)[^4]。 ```python from timm.models.layers import DropPath, trunc_normal_ class SpatialAttentionModule(nn.Module): def __init__(self, channel): super().__init__() self.conv = nn.Sequential( nn.Conv2d(channel, channel//8, kernel_size=1), nn.ReLU(), nn.Conv2d(channel//8, 1, kernel_size=3, padding=1)) def forward(self, x): attention_map = torch.sigmoid(self.conv(x)) output = x * attention_map.expand_as(x) return output ``` #### 多尺度融合策略 借鉴 Damo-YOLO 和其他先进框架的经验,实施多层次特征图之间的跨级别连接(Cross-Level Connection)以及渐进式上采样(Progressive Upsampling),有助于捕捉更多细节并加强全局上下文理解[^3]. ```python def cross_level_connection(features_list): num_levels = len(features_list) fused_features = [] for i in range(num_levels): scale_factor = pow(2, (num_levels - 1 - i)) # 计算当前level相对于最高分辨率layer的比例因子 scaled_feature = F.interpolate( features_list[i], scale_factor=scale_factor, mode='nearest' ) fused_features.append(scaled_feature) final_fusion = sum(fused_features)/len(fused_features) return final_fusion ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值