一、本文介绍
本文记录的是利用DynamicConv优化YOLOv11的目标检测网络模型。 在大规模训练中,模型的参数量越多,FLOPs也越高,但在一些对计算资源有限制的场景下,需要低FLOPs的模型同时又希望模型能从大规模预训练中受益。传统的方法很难在增加参数的同时保持低FLOPs,因此Dynamic convolution模块应运而生。本文详细介绍了Dynamic convolution模块的运行原理,并将其加入到检测头中进行二次创新。
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
文章目录
二、动态卷积介绍
2.1 设计出发点
- 在大规模视觉预训练中,通常模型的性能受到数据、参数和FLOP三个关键因素的影响。一般来说,模型的参数数量越多,FLOP也越高,但在移动设备等对计算资源有限制的场景下,需要低
FLOP的模型同时又希望模型能从大规模预训练中受益。传统的方法很难在增加参数的同时保持低FLOP,因此需要一种新的设计来解决这个问题,Dynamic convolution模块应运而生。
2.2 原理
Dynamic convolution模块基于动态系数生成的原理来工作。
对于输入 X X X,首先应用全局平均池化<
动态卷积优化YOLO目标检测网络
订阅专栏 解锁全文
940

被折叠的 条评论
为什么被折叠?



