RT-DETR改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张

一、本文介绍

本文记录的是利用风车卷积改进RT-DETR的目标检测网络模型。

在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用风车卷积PConv模块改进RT-DETR,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### RT-DETR改进方法 为了提升实时目标检测的效果,RT-DETR引入了多种创新机制来优化模型性能。具体来说: #### 双动态令牌混合器(D-Mixer) 双动态令牌混合器是一种新颖的设计,旨在更有效地融合全局和局部信息。通过这种方式,模型能够在更大范围内捕捉特征,并增强其归纳偏置能力[^3]。 这种设计允许模型根据输入数据自适应调整关注区域,从而提高对复杂场景的理解能力和鲁棒性。相比于传统的方法,这种方法可以显著增加有效感受野(ERF),进而改善整体检测精度。 ```python class D_Mixer(nn.Module): def __init__(self, config): super(D_Mixer, self).__init__() # 定义用于处理全局和局部信息的组件 def forward(self, x): global_info = self.global_mechanism(x) local_info = self.local_mechanism(x) mixed_output = torch.cat((global_info, local_info), dim=1) return mixed_output ``` ### 最新研究进展 最新的研究表明,采用双动态令牌混合器后,RT-DETR系列模型在多个公开测试集上的表现均有明显进步。特别是在COCO val2017数据集中,不同版本的RT-DETR取得了如下成绩: - **RT-DETR-L**: 实现了53.0%的AP以及114 FPS的速度; - **RT-DETR-X**: 达到了更高的54.8% AP 和 74 FPS 的速度; - **RT-DETR-R50**: 提供了53.1% AP 和 108 FPS 的平衡选项; - **RT-DETR-R101**: 则进一步提升了至54.3% AP 和同样74 FPS 的速度[^1]。 这些结果显示,在不牺牲速度的前提下,RT-DETR能够提供更加精确的目标检测结果,成为该领域内新的标杆之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值