【YOLOv8/v9/v10/v11、RT-DETR改进合集】详解SimSPPF,简化设计,提高计算效率

一、本文介绍

本文记录的是基于SimSPPF模块的YOLOv8YOLOv9YOLOv10YOLOv11RT-DETR目标检测改进方法研究。介绍了SPPSPPF以及SimSPPFSimSPPF的设计更加简化,计算效率更高


2.1 SPP

空间金字塔池化(Spatial Pyramid Pooling,SPP)主要是为了解决输入图像尺寸不固定的问题。在传统的卷积神经网络中,通常要求输入图像具有固定的尺寸,这在实际应用中会带来很多不便。而空间金字塔池化能够对不同尺寸的输入图像产生固定长度的输出,使得网络可以接受任意尺寸的图像输入。

原理

  1. 对于输入的特征图,空间金字塔池化将其划分成不同尺度的子区域。例如,可以将特征图划分成多个不同大小的网格,形成多个层次的空间金字塔结构。
  2. 对每个子区域分别进行池化操,例如最大池化或平均池化。这样可以得到不同尺度的特征表示。
  3. 将不同尺度的池化结果进行拼接,得到一个固定长度的特征向量。这个特征向量可以作为后续全连接层的输入。

在这里插入图片描述

特点

  1. 灵活性:可以处理任意尺寸的输入图像,无需对图像进行裁剪或缩放等预处理操作,保留了图像的原始信息。
  2. 多尺度特征提取:通过不同尺度的空间金字塔结构,能够提取图像在不同尺度下的特征,增强了网络对不同大小目标的适应能力。
  3. 减少过拟合:由于可以接受不同尺寸的图像输入,增加了数据的多样性,有助于减少过拟合的风险。
class SPP(nn.Module):
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

2.2 SPPF

SPPF(Spatial Pyramid Pooling - Fast)是一种空间金字塔池化的改进版本

原理

  1. 首先,将输入特征图划分成多个不同大小的区域。这些区域可以是固定大小的网格,也可以是根据特定规则划分的区域。
  2. 对每个区域进行快速池化操作,例如最大池化或平均池化。快速池化可以通过一些高效的算法实现,以减少计算时间。
  3. 将不同尺度的池化结果进行融合,可以通过拼接、相加或其他融合方式。这样得到的融合特征包含了多尺度的信息。
  4. 最后,将融合后的特征输出,作为后续网络层的输入。

在这里插入图片描述

特点

  1. 高效性:相比传统的空间金字塔池化,SPPF在保持相似性能的同时,具有更高的计算效率。它通过对特征图进行更快速的池化操作,减少了计算量和处理时间
  2. 多尺度特征融合:与SPP一样,SPPF也能够提取多尺度的特征信息。它将输入特征图划分成不同大小的区域,并进行池化操作,然后将这些不同尺度的池化结果进行融合,得到更丰富的特征表示
  3. 灵活性:可以很容易地集成到各种卷积神经网络架构中,适用于不同的任务和应用场景。
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

2.3 SimSPPF

SimSPPF(Simplified Spatial Pyramid Pooling - Fast)模块YOLOv6中提出的一种简化的空间金字塔池化模块,主要用于计算机视觉任务中的特征提取。以下是其设计原理及特点。

SimSPPF模块由两个主要部分组成:

  1. 一系列卷积操作:包括一个初始的 SimConv 卷积层用于将输入特征图进行初步处理,降低通道数为原来的一半。其中SimConv是一个自定义的卷积模块,包含卷积操作(nn.Conv2d)批归一化(nn.BatchNorm2d)ReLU激活函数。它的作用是对输入特征图进行卷积操作以提取特征,并通过批归一化来加速训练过程和提高模型的稳定性ReLU激活函数则引入非线性,增强模型的表达能力
  2. 多次最大池化和拼接操作:通过多次最大池化操作和拼接操作,实现对不同尺度特征的融合,最后再经过一个 SimConv 卷积层将融合后的特征图转换为指定的输出通道数。

在这里插入图片描述

通过以上设计,SimSPPF模块能够有效地提取多尺度特征,并融合这些特征以增强模型对不同大小物体的识别能力。同时,简化的设计使得计算效率更高,适用于对实时性要求较高的计算机视觉任务。

class SimConv(nn.Module):
    '''Normal Conv with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False):
        super().__init__()
        padding = kernel_size // 2
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias=bias,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = nn.ReLU()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

class SimSPPF(nn.Module):
    '''Simplified SPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5):
        super().__init__()
        c_ = in_channels // 2  # hidden channels
        self.cv1 = SimConv(in_channels, c_, 1, 1)
        self.cv2 = SimConv(c_ * 4, out_channels, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

论文:https://arxiv.org/abs/2209.02976

三、SimSPPF模块的实现代码

四、添加步骤

模块完整介绍个人总结实现代码模块改进yaml配置、以及详细添加步骤请参考对应链接:

YOLOv8:
详细步骤:YOLOv8改进策略【SPPF】| SimSPPF,简化设计,提高计算效率

改进合集:YOLOv8全方位改进目录一览


YOLOv9:
详细步骤:YOLOv9改进策略【SPPF】| SimSPPF,简化设计,提高计算效率

改进合集:YOLOv9全方位改进目录一览


YOLOv10:
详细步骤:YOLOv10改进策略【SPPF】| SimSPPF,简化设计,提高计算效率

改进合集:YOLOv10全方位改进目录一览


YOLOv11:
详细步骤:YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率

改进合集:YOLOv11全方位改进目录一览


RT-DETR:
详细步骤:RT-DETR改进策略【SPPF】| SimSPPF,简化设计,提高计算效率

改进合集:RT-DETR全方位改进目录一览

### YOLORTDETR目标检测模型特点及差异 #### 特点对比 YOLO是一种统一的目标检测模型,其结构简单并可以直接在整张图像上训练[^1]。不同于基于分类器的方法,YOLO采用了一个直接对应于检测性能的损失函数,并且整个模型可以联合训练。 相比之下,RTDETR(Real-Time Detection Transformer)则采用了Transformer架构来处理视觉任务中的序列建模问题。这种设计允许更灵活地捕捉全局上下文信息,在复杂场景下可能提供更好的表现。然而关于RTDETR的具体实现细节以及评估结果并未给出具体文献支持,因此这部分描述依赖于一般理解而非特定引用。 #### 性能差异 对于VOC 2012测试集而言,YOLO获得了57.9% 的mAP (mean Average Precision),这一成绩低于当时的最先进水平,接近原始R-CNN使用VGG-16的表现[^2]。值得注意的是,虽然YOLO在某些类别如猫和火车上的识别率较高,但在小型物体比如瓶子、羊等方面存在劣势。 至于RTDETR,在公开资料中较少有关于此模型精确性能指标的信息。但从理论上讲,由于引入了自注意力机制,预计可以在一定程度上改善对不同尺度尤其是较小尺寸对象的检出效果;不过实际效果还需通过实验验证。 #### 架构区别 - **YOLO**: 卷积神经网络(CNN)-主导的设计使得该框架能够快速执行推理操作,适合实时应用场合。 - **RTDETR**: 利用了Transformers的强大能力来进行特征提取与位置编码学习,这有助于增强模型的理解力特别是在面对遮挡或变化较大的实例时。 ```python # 示例代码仅用于展示两个模型的不同之处,并非真实可运行代码 class YoloModel(nn.Module): def __init__(self): super(YoloModel, self).__init__() # 定义卷积层和其他组件... def forward(self, x): pass class RTDETRModel(nn.Module): def __init__(self): super(RTDETRModel, self).__init__() encoder_layer = nn.TransformerEncoderLayer(d_model=..., nhead=...) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=...) def forward(self, src): output = self.transformer_encoder(src) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值